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Increasingly, pre-trained convolutional neural networks (CNNs) are being deployed for inference in various

computer vision applications, both on the server-side in the data centers and at the edge. CNN inference is

a very compute-intensive task. It is a challenge to meet performance metrics such as latency and through-

put while optimizing power. Special-purpose ASICs and FPGAs are suitable candidates to meet these power

and performance budgets simultaneously. Rapidly evolving CNN architectures involve novel convolution

operations such as point convolutions, depth separable convolutions, and so on. This leads to substantial

variation in the computational structure across CNNs and layers within a CNN. Because of this, FPGA re-

configurability provides an attractive tradeoff compared to ASICs. FPGA-based hardware designers address

the structural variability issue by generating a network-specific accelerator for a single network or a class

of networks. However, homogeneous accelerators are network agnostic and often sacrifice throughput and

FPGA LUTs for flexibility.

In this article, we propose an FPGA overlay for efficient processing of CNNs that can be scaled based on the

available compute and memory resources of the FPGA. The overlay is configured on the fly through control

words sent by the host on a per-layer basis. Unlike current overlays, our architecture exploits all forms of

parallelism inside a convolution operation. A constraint system is employed at the host end to find out the

per-layer configuration of the overlay that uses all forms of parallelism in the processing of the layer, resulting

in the highest throughput for that layer.

We studied the effectiveness of our overlay by using it to process AlexNet, VGG16, YOLO, MobileNet, and

ResNet-50 CNNs targeting a Virtex7 and a bigger Ultrascale+VU9P FPGAs. The chosen CNNs have a mix of

different types of convolution layers and filter sizes, presenting a good variation in model size and structure.

Our accelerator reported a maximum throughput of 1,200 GOps/second on the Virtex7, an improvement of

1.2× to 5× over the recent designs. Also, the reported performance density, measured in giga operations per

second per KLUT, is 1.3× to 4× improvement over existing works. Similar speed-up and performance density

is also observed for the Ultrascale+VU9P FPGA.

CCS Concepts: • Computer systems organization→ Reconfigurable computing;

Additional Key Words and Phrases: FPGAs, convolutional neural networks, accelerators

ACM Reference format:

Ziaul Choudhury, Shashwat Shrivastava, Lavanya Ramapantulu, and Suresh Purini. 2022. An FPGA Overlay

for CNN Inference with Fine-grained Flexible Parallelism. ACM Trans. Archit. Code Optim. 19, 3, Article 34

(May 2022), 26 pages.

https://doi.org/10.1145/3519598

Authors’ address: Z. Choudhury, S. Shrivastava, L. Ramapantulu, and S. Purini, International Institute of Information

Technology, Hyderabad, Gachibowli, Hyderabad, Telangana, India, 500032; emails: {ziaul.c, shashwat.shrivastava}@

research.iiit.ac.in, lavanya.r@gmail.com, suresh.purini@iiit.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1544-3566/2022/05-ART34 $15.00

https://doi.org/10.1145/3519598

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 34. Publication date: May 2022.

https://orcid.org/0000-0001-9019-0239
https://doi.org/10.1145/3519598
mailto:permissions@acm.org
https://doi.org/10.1145/3519598
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519598&domain=pdf&date_stamp=2022-05-04


34:2 Z. Choudhury et al.

1 INTRODUCTION

Since the early 2010s, Convolutional Neural Networks (CNNs) have found applications in

many computer vision tasks such as image classification and segmentation, motion analysis, three-

dimensional (3D) scene reconstruction, and so on. Often CNNs are used for automatic feature ex-

traction followed by the application of conventional machine learning models. A CNN consists of

multiple convolutional, max-pooling, and thresholding layers. The difference between one CNN

and another is their architecture, which entails the number and choice of layers and how they are

interconnected. Even the simplest CNN has a high model complexity, which means that the num-

ber of parameters to learn is large, hence the associated training time. However, once the model

parameters are learned, the model can be deployed to perform inference on real data. A learned

model is often deployed in memory and power-constrained devices, for example, in a mobile robot

for object detection. Efficient implementations of CNNs on multi-core CPUs and GPUs have been

reported in the literature. For example, the TITAN GPU from Nvidia is tailor-made for processing

of CNNs. ASICs [6, 19] provide significant gains in performance and power efficiency for CNNs

but they may not cope with the ever-evolving CNN models due to the long design cycles and high

engineering costs. FPGAs are highly configurable and provide a good tradeoff between the high-

cost ASICs and low-performance general-purpose processors for specialized applications such as

CNNs. Therefore, they prove to be an attractive solution for accelerating CNN inference.

Many works have proposed various FPGA-based CNN accelerators that outperform CPUs and

GPUs on the performance-per-watt metric. These architectures can be broadly categorized into

two classes. In the first class, for a given CNN, a custom accelerator is synthesized using one of

the available parametric templates [14]. This requires expensive design synthesis and FPGA re-

flashing. In many edge and deeply embedded applications, this may not be feasible. Further, these

days cloud companies are offering Machine Learning as a service. These services are supported

by a large cluster of custom accelerators at the backend. The CNN-specific hardware accelerators

severely constrains the scheduling of machine learning workloads and results in hardware resource

under utilization.

In contrast to the CNN-specific architectures, the second class consists of overlay architec-

ture [51], which is synthesized and flashed on the FPGA once, but is flexible enough to process

a broad class of CNNs through soft reconfiguration. This addresses the aforementioned problems

due to custom CNN accelerators. There are few design approaches for overlay architectures. For

example, we can have an overlay architecture that resembles a processor controlled through an

instruction set [35]. The same architecture can process all the layers of a network, and also dif-

ferent networks, without the need for re-synthesis. However, such a homogeneous approach to

process different CNN layers with varying input and output feature map shapes, kernel sizes, and

so on, result in sub-optimal utilization of the available FPGA resources such as DSPs and/or LUTs.

The work in [34] simulated various shapes of a systolic array to show that the throughput gain is

sensitive to the shape of the array for various workloads.

To solve this problem of homogeneous overlay accelerators, a heterogeneous design method-

ology is proposed in several previous works [46]. A heterogeneous overlay accelerator contains

multiple homogeneous units. Each of these is optimized specifically for a set of workload char-

acteristics, for example, input data shape, kernel size, and so on. A heterogeneous design mainly

aims to optimize throughput by concurrently processing multiple images over the different accel-

erator units in a pipelined fashion. While this approach increases the throughput, the latency will

be longer. Also, as the variations in network layer architectures grow, so does the complexity of

these heterogeneous architectures.

The primary contribution of this work is an overlay architecture that can process a variety of

CNN architectures with varying computational structures, kernel sizes, and strides. The overlay
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parameters are chosen based on the available FPGA memory and compute capacity. Unlike other

works that schedule instructions on the overlays, we orchestrate the computations associated with

a CNN layer by configuring the overlay at runtime. Our overlay exploits all forms of parallelism

present within a CNN layer. Further, the configuration parameters include parallelism factors such

as surface and filter parallelism. A constraint system determines these factors to achieve opti-

mal performance. We keep the design complexity of our overlay low, in terms of FPGA LUT con-

sumption, without sacrificing its flexibility. Our overlay’s host interface is comparatively simple,

wherein the host sends a few control words to configure the accelerator, followed by the required

input data. We demonstrate the effectiveness of our overlay by processing the well-known AlexNet

and VGG16 CNNs. Our overlay also supports the processing of three relatively new CNNs, namely

YOLO, MobileNet, and ResNet. Our hardware is synthesized for a mid-sized Virtex7 and a bigger

Ultrascale+VU9P FPGA to illustrate the range of FPGAs our overlay can target effectively.

The rest of this article is organized as follows. In Section 2 and Section 3, we present related

work and the necessary background on CNNs; in Section 4, we discuss how we schedule the com-

putations of a CNN layer over our accelerator; in Section 5, we present our overlay architecture;

in Section 7 we present the experimental results, and, finally, we conclude in Section 8.

2 RELATED WORK

The hardware generated by the existing CNN-to-FPGA frameworks can be categorized as either a

streaming architecture or a single computation engine-based architecture [43]. A streaming archi-

tecture typically consists of dedicated hardware modules for each layer of the CNN, connected in

a pipeline. All the layers are processed simultaneously by streaming data across the pipeline. Fpga-

ConvNet [42] is designed on this principle. It supports multi-bit-stream design via complete FPGA

reconfiguration, where different hardware architectures, matching the layer workloads, are used

to process different layers of the CNN. DeepBurning [45] used a library-based approach. Based

on the layer functionality, hardware building blocks are instantiated from a repository and inter-

connected to form the network. Each block is configured using fixed tiling parameters, calculated

from a heuristic search, and is time-shared across the network layers. Haddoc [2] generates its

architecture by modeling the target CNN as a dataflow graph of actors and directly mapping each

actor to a dedicated compute unit. AutoCodeGen [23] includes parameterized hardware blocks for

each CNN layer, instantiated using a high-level analytical performance and resource model, with

the convolution blocks executing in a fully unrolled manner. The streaming design principles fa-

vor customization over flexibility, where a single accelerator gets tightly coupled with a specific

CNN. Also, it becomes hard to map all the CNN layers to resource-constrained FPGAs, which

is when the CNN is processed in a time-multiplexed fashion over a generic accelerator architec-

ture leading us to the idea of single-engine architectures. Single engine architectures comprise a

single computation engine that executes the CNN layers sequentially. The accelerator processes

each layer at its maximum throughput. This design is a derivative of the well-studied systolic ar-

ray structures [28]. AngelEye [32] comprises an array of homogeneous processing elements. Each

contains a bank of convolvers, a summing tree, and a pooling logic that are instantiated using a

throughput maximization heuristic, which uses a set of loop unroll factors. DnnWeaver [35] con-

tains parametric hardware templates arranged in a similar array of PEs. The configuration of each

PE is found through a search-based heuristic, which is later used to synthesize the accelerator.

Once synthesized, this configuration remains the same throughout the processing of the network.

Caffeine [52] consists of a systolic array of PEs that perform multiplication operations configured

using a roofline model on the hardware design space. Snowflake [10] employs a hierarchical hard-

ware structure that is designed to be controlled by software, with complex control logic and is

CNN agnostic depending only on the available FPGA resources. Despite the flexibility gains in
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this design principle, inefficiencies are introduced due to control mechanisms that resemble those

of an instruction-based processor [16]. Moreover, the uniform unroll factors applied to the entire

processing array can reduce the performance of CNNs with varying workload characteristics.

In another classification, the state-of-the-art CNN accelerator designs can be divided into two

categories: uniform/homogeneous and heterogeneous. The homogeneous design methodology

uses a uniform architecture to process all layers of a CNN model in order. For a single layer’s

inference, a homogeneous design first divides an input feature map into tiles. Then it repeatedly

loads the tiles one after another from off-chip memory to on-chip memory and then processes

the tiles in sequence by a jointly optimized accelerator design for all convolutional layers. Such

designs have been described in [3, 8, 9, 27, 54]. However, different layers in a CNN model have

different input data shapes. As a result, the same tiling factors in a homogeneous design may

cause dynamic resource inefficiency for some layers. To solve this problem, a heterogeneous de-

sign methodology is proposed in several previous works [21, 36, 36, 40, 53]. A heterogeneous design

incorporates multiple accelerators on a single FPGA. Each of them is optimized specifically for one

or a set of layers. These architectures concurrently process multiple input images, by pipelining

them on the different accelerators. The work in [47], supported pipelined execution of different

tiles from a single input image on multiple heterogeneous accelerators. As the range of supported

networks grows so does the complexity of managing the different accelerators on the FPGA. Over-

lay architectures[1, 5, 25, 38], combine ideas from both heterogeneous and homogeneous designs.

They operate as a single uniform architecture with the flexibility to adjust to different tile sizes

during runtime. The work in [50] proposed an FPGA overlay with software-like programmability

for CNN end users. The overlay operate via an Instruction Set Architecture with complicated func-

tions with variable runtimes but a uniform length. The granularity of instruction is optimized to

provide good performance and sufficient flexibility. Overlay designs tend to consume more FPGA

logic resources and often fail to exploit all forms of parallelism within CNN layer. In this work,

the proposed overlay architecture operates with fewer FPGA LUTs, which can be attributed to a

simple Processing Engine (PE) structure and exploits all forms of parallelism within a CNN layer.

3 BACKGROUND ON CNNS

This section provides a brief introduction to the structure of CNNs. The anterior part of a CNN

consists of a series of convolutional and pooling layers, whereas the posterior part can contain

zero, one, or multiple Fully Connected (FC) layers.

At each convolutional layer of a CNN, an input volume1V of dimensions (IL, IL, ID) is convolved

with a set of F filters {Fi | 1 ≤ i ≤ F }, each of dimensions (K ,K , ID), to generate an output volume

V ′ of dimensions (OL,OL,OD). If S is the stride of the filter application, then OL = I L−K+1
S

. The

depth slices of the input volume are called input feature maps and are denoted by IFMAPi , 1 ≤
i ≤ ID. The dimensions of an input feature map IFMAPi are IL × IL. Similarly, the depth slices of

the output volume are called output feature maps and are denoted by OFMAPi , 1 ≤ i ≤ OD. Note

that OD = F . The dimensions of an output feature map OFMAPi are OL ×OL.

An output feature map OFMAPi is rendered by applying a 2D convolution of filter Fi with the

input volumeV . We call this a 2D convolution, since the filter moves only in the length and breadth

directions but not along the depth. Each three-dimensional filter Fi is an array of two-dimensional

kernels F j
i , 1 ≤ j ≤ ID. Then the surface convolution between an input feature map IFMAPj and

a filter kernel F j
i is defined as

OFMAP j
i = IFMAPj �s F

j
i . (1)

1In this article, input volume refers to the input of the first CNN layer and subsequent intermediary layers, too.
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Fig. 1. An schematic overview of the types of parallelism exploited in our overlay.

Given that, the 2D convolution of the input volume with a filter is algebraically equivalent to the

summation of the surface convolutions between their corresponding depth slices. Thus we have

the following:

OFMAPi =

I D∑

j=1

IFMAPj �s F
j
i =

I D∑

j=1

OFMAP j
i . (2)

An activation function such as Rectified Linear Unit is applied on each pixel of the output volume

before it is fed as input to the next layer. Usually, a pooling layer follows a convolution layer. In

a pooling layer, max or average filters are applied on each surface of the input volume. So, when

a 2 × 2 max-pooling filter with a stride 2 is applied on an input volume, then the ouput volume

dimensions are OL = IL/2 and OD = ID. Thus the pooling layers help in reducing the surface

dimensions of an input volume. Notice that there is no change in the depth dimension.

The FC layers resemble the conventional neural networks in which every neuron from a layer

is connected with every other neuron from the previous layer. Due to this, the number of weights

per layer will be huge. So as to contain them, FC layers start after the input volume dimensions

are substantially reduced by the preceding convolutional and pooling layers.

Apart from the canonical full-depth convolution described above, there are other novel con-

volutions such as point and depth-separable convolutions like in YOLO and MobileNet. In point

convolutions, the filter dimensions are (1, 1, ID), which leaves the output volume’s surface dimen-

sions the same as the input volume. In a depth-separable convolution layer, the depth of each

filter is only 1, and hence the output feature map OFMAPi is obtained by doing a mere surface

convolution between the input feature map IFMAPi and filter fi , i.e., OFMAPi = IFMAPi �s fi .

3.1 Parallelism and Data-Reuse

From the Equation (2), we can infer the following four kinds of available parallelism while render-

ing an output volume, see Figure 1.

(1) Filter Parallelism (FP): Each OFMAP can be calculated in parallel. This is because an

OFMAP depends only on the input volume and corresponding filter bank. Let the param-

eter FP denote the number of OFMAPs generated in parallel.

(2) Surface Parallelism (SP): While applying a surface convolution, it is possible to compute

each value in the OFMAP in parallel, and there are OL2 such values. Let the parameter SP
denote the number of surface convolutions computed in parallel.

(3) Channel Parallelism (CP): From Equation (2), we can see that an OFMAP is obtained

by the summing of the ID surface convolutions. Each of these surface convolutions can

be computed in parallel. Let the parameter CP denote the number of surface convolutions

computed in parallel across the input volume’s ID channels.

(4) Kernel Parallelism (K2): A single value of an OFMAP is created by applying a filter with

a kernel of size K over an IFMAP. A total of K2 multiply-and-accumulate operations are

required to compute this value and all of them can be executed in parallel.
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Data reuse of an input data point refers to the number of computations it contributes to in the

overall processing of a layer. Each filter weight, in any filter, is used to generate OL2 pixels in an

OFMAP, and hence the corresponding reuse factor isOL2. While rendering an OFMAP, each value

in an IFMAP is used (K/S )2 times, where S is the stride. There are in total F OFMAPs. Therefore

the overall reuse factor for a single IFMAP value is F × ( K
S

)2.

Proposed Approach: It is possible to exploit all the aforementioned kinds of parallelism by

suitably orchestrating computations on our overlay. The type of parallelism exploited has a direct

impact on the data reuse. We usually exploit filter, surface, and kernel parallelism to saturate the

DSP utilization. Utilizing channel parallelism puts stress on the available memory bandwidth. The

canonical approach we adopt is to fetch a filter only once from off-chip memory and completely

reuse it before discarding it. Those fetches are equivalent to compulsory misses in the cache par-

lance of CPUs. This means we achieve maximal data reuse with respect to filter coefficients. An

input volume pixel, once fetched, is completely reused while rendering FP OFMAPs and then dis-

carded, to be re-fetched again while rendering the next batch of FP OFMAPS. Thus a value from

an IFMAP is fetched F/FP times from off-chip memory leading to a reuse of FP × (K/S )2. In the

next section, we present how we orchestrate the layer computations over our overlay to exploit

different parallelism types while maximizing data reuse.

4 SCHEDULING COMPUTATIONS ON OUR OVERLAY

Multiply-and-accumulate (MAC) operations dominate the computations in a CNN. Let Mmac

be the total number of MAC operations from all the CNN layers put together. These operations are

executed on the physical FPGA DSP blocks. If there are N dsp blocks on the FPGA, then the peak

achievable compute throughput, measured in MACs/cycle, is N dsp . If hardware is synthesized at

a certain clock speed, then the effective compute throughput achievable depends on two factors:

the off-chip memory bandwidth and the number of MAC operations performed for every input

fetched from the off-chip memory (data reuse factor). A single inference pass of a CNN requires

at least Mmac

N dsp clock cycles. To approach this theoretical lower bound, and in general, to minimize

the end-to-end latency of a design, we have to arrive at an overlay architecture and a suitable way

to schedule the layer computations on the overlay such that the data reuse is maximized.

In the rest of this section, we first describe the execution model of our overlay architecture.

Then we show how we batch the computations within a layer using a system of constraints and

schedule them on the overlay while maximizing parallelism and data reuse to achieve peak DSP

utilization.

4.1 Execution Model

We use a single-engine accelerator design approach for our overlay. A single processing pipeline

computes all the layers of the network. The output volume rendered while processing layer i is

streamed out to external memory and later loaded as input when computing the next layer i + 1.

With respect to the Equation (2), rendering the output volume is equivalent to computing the

output feature maps OFMAPi for 1 ≤ i ≤ F . These output feature maps are computed in batches

iteratively. The number of OFMAPs computed in each batch, which is equal to FP , can vary and

is determined by the scheduling algorithm described in Section 4.3.

We compute convolutions in a streaming fashion, wherein the input volume is streamed, and

the necessary filter coefficients are pre-fetched and stored in registers. The pre-fetch of filter coef-

ficients overlaps with computation to avoid stall cycles.

Each input feature map IFMAPj of the input volume is surface convolved with the correspond-

ing depth slice F j
i where filter Fi belongs to the current batch. This computation starts only after the
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corresponding depth slices of all the current batch filters are available on the FPGA registers. Then

each input feature map IFMAPj is streamed in a row major fashion to compute the corresponding

surface convolution with respect to each filter. The computed surface convolution is accumulated

in respective output buffers. The number of surface convolutions done in parallel depends on the

parallelism factor SP . While the surface convolutions are being computed, the next depth slice’s

filter coefficients are streamed using a double buffering technique.

Once the minimum number of input pixels required for carrying out the filter convolutions have

accumulated in the input buffers, surface convolutions can be computed at a steady throughput

determined by FP and SP . At any point, the accelerator stores a set of rows from an input slice

and multiple partially rendered output volume slices. The line buffering of the input ensures that

only a working set of rows from the input slice is required to sustain a fixed number of surface

convolutions every cycle.

Once a filter batch is done, i.e., all the filter depths have convolved with the corresponding input

volume depths, the output slices stored in the buffers are drained out to external memory one at

a time. This drainage of output corresponding to a filter batch is overlapped by executing parallel

convolutions corresponding to the next batch of filters. To do this, a second set of buffers are used

for accumulating the output of the next batch. Note that the input volume has to be streamed again

at this point. This double buffering scheme ensures maximum compute to memory overlap during

the processing of multiple filter batches,

DSPconstraint→ FP × SP × K2 ≤ N dsp , (3)

DRAM bandwidth constraint→ SP ×CP ≤ Be

S2
, (4)

Number of BRAM blocks constraint→ 2 × FP × SP ≤ N br am , (5)

Compute/Memory overlap constraint→ OL2

SP
≥ FP × K2

Bw
, (6)

Output flush constraint→ OL2 × ID
SP

≥ FP ×OL2

B
. (7)

4.2 Constraint System

The runtime configuration of our overlay is characterized by the type of operation (convolution,

max pooling, etc.) and the parallelism mix with which it is executing that operation. We set con-

straints on the parallelism factors, such that the processing pipeline in our overlay operates with

zero or minimum stalls. The constraint system is discussed in the rest of the section. At first, we

recall the CNN layer and FPGA parameters used in the constraint system.

• Layer Parameters: At each layer of a CNN, an input volume of dimensions (IL, IL, ID) is

convolved with a set of F filters, each of dimension (K ,K , ID), to generate an output volume

of dimensions (OL,OL, F ).
• FPGA Parameters: Let the number of DSP and BRAM blocks on the FPGA be N dsp and

N br am , respectively, and 2B bytes/cycle be the combined read and write memory bandwidth

to external memory.

If FP × SP surface convolutions are computed per cycle and the filter dimensions are (K ,K ),
then the number of MACs per cycle are FP ×SP ×K2. The maximum number of MACs is bound by

the number of available DSPs (N dsp ) on the FPGA yielding the DSP constraint (3). Our overlay is

configured to process different types of convolutions. One such type are depthwise convolutions

prevalent in sparse CNNs like MobileNet. These special convolutions are computed with extra DSP
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resources. The DSPs used for computing the MACs in the depthwise computations are very few

compared to the DSPs used during the normal convolutions. Because of the low number, these

DSPs have not been taken into the DSP constraint (3).

If Be is effective off-chip memory bandwidth, since surface convolutions are computed in a

streaming fashion, then every surface convolution requires S2 additional inputs, corresponding to

an IFMAP, from off-chip memory, where S is the filter stride. Hence, to compute SP convolutions

in parallel, SP × S2 inputs have to be fetched from off-chip memory. For parallel convolutions

across the channel dimension, every cycle CP inputs corresponding to an CP different IFMAPs

have to be fetched. Combining the above two factors, leads to the DRAM bandwidth constraint (4).

Notice that the off-chip memory bandwidth has to be split between the surface and channel type

of parallelism.

The number of available BRAM blocks on the FPGA impacts the parallelism factors FP and SP .

To facilitate SP parallel convolutions for each of the FP output volume slices from the current

batch, we store each output volume slice in SP BRAM blocks in an interleaved fashion. Thus,

we need FP × SP BRAM blocks. Since we are doing double buffering to overlap computation and

communication, we need BRAM blocks twice that number. This leads to the BRAM size/bandwidth

constraint (5). The input buffer utilizes very few BRAM blocks compared to the output buffers.

Empirically, we use a 16×L line buffer, where L is the row length of the largest IFMAP. The buffer

just utilizes 16-20 BRAM blocks. Therefore, we keep the BRAM count from the input buffer out of

the constraint system. The channel parallelism factorCP does not contribute toward BRAM usage,

since all the CP convolutions reduce to a single value. We resort to channel parallelism only for

pointwise convolutions where K = 1.

We view a BRAM block as an array of fixed-point numbers of type (IB, FB) where IB and FB
denote integral and fractional bit widths. When we say that a BRAM block’s size is A, it can hold

A pixels of a given fixed-point type. For many CNNs, in the first few layers, the output dimen-

sion OL2 could be much greater than A × SP limiting the available filter parallelism. This limi-

tation is relaxed by tiling the input volume across its surface into vertical cubes of dimensions

IL × OL′ × ID.

As we move from one input channel to another, we have to pre-fetch the corresponding filter

weights for the respective channel. During these cycles, there is no DSP utilization. Alternatively,

we can use part of the bandwidth B to overlap fetching of filters from the next channel while

computing convolutions on the current channel, i.e., Be = B −Bw . Here Bw is the part of the input

bandwidth that is used for fetching of filter weights, and it varies across layers. In our accelerator

design, we use this approach, which leads to a small decrease in the available bandwidth B for

the input volume pixels but, at the same time, prevents the DSPs from stalling for filter data. For a

given SP , OL2

SP
is the number of cycles it takes to render FP partial output surfaces, for a filter batch,

in parallel. To hide filter pre-fetch latency, FP × K2 weights corresponding to the next batch of

a filter from the respective channel should also be fetched within this interval using a part of the

DRAM bandwidth. This compute/memory overlap constraint to hide the communication latency

is given in Equation (6).

As the current batch of OFMAPs is computed, the previous batch of OFMAPs is written to off-

chip DRAM. The number of cycles required for computing a batch of FP OFMAPs is given by (FP ×
OL2 × ID)/(FP × SP ), which is equal to (OL2 × ID)/SP . The size of the output volume generated

in each step is FP × OL2. Assuming that the write bandwidth is equal to the read bandwidth of

the DRAM, the number of clock cycles required to spill the entire output buffer is (FP × OL2)/B.

To minimize the interference between computing and communication and reduce the potential

stall cycles as the output buffer is not yet completely spilled, the output flush constraint (7) has

to hold good and as tight as possible. If this constraint gets violated, then the correctness may
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Fig. 2. The workflow for processing a CNN using our overlay. The tensor flow specification is lowered to a set

of accelerator calls using a high-level language (Python). Communication with the overlay is done through a

driver API written in C++. Computations of a layer are broken into multiple batches/iterations, in the form of

a compute schedule, and executed on the overlay. The hardware is configured on the fly toward processing

a compute batch using control words. A compute schedule for three layers of AlexNet is shown in the figure.

not be affected, but there will be an imbalance between computation and communication cycles,

due to which stalls will be incurred. In other words, there will be cycles where the DSP blocks are

idle.

The constraint system is part of the CPU host logic written in a high level language like python.

These constraints are used by a scheduler, that generates per layer accelerator configurations for

processing the current layer.

4.3 Layer Scheduling

Figure 2 shows the overall workflow of executing a CNN on the overlay. The host side code for

CNN inference can be written using any of the available libraries such as TensorFlow, PyTorch, and

so on. In this work, we used TensorFlow-Python to test our overlay. The host code communicates

with the overlay running on the FPGA through a C++-based driver code.

The host code pre-processes each CNN layer to identify the feasible parameters (FP , SP ) satis-

fying the set of Constraints (3) to (7). Note that if the overlay is configured to compute FP output

feature maps in parallel with a surface parallelism factor SP , then FP × SP convolutions will be

computed per cycle. Hence, to maximize the DSP utilization, among the feasible parameters, those

parameters (FP , SP ) that maximize FP ×SP are filtered. From among them, a parametric pair with

maximal FP is chosen as it minimizes the number of times the FPGA is invoked from the host side.

The F output feature maps are computed in � F
F P
� batches with each batch computing FP output

feature maps in parallel. The last batch may not be full and hence to increase the DSP utilization

we increase the surface parallelism factor SP subject to the satisfaction of the constraints. The in-

put volume will be re-streamed from DRAM while computing a batch of output feature maps. Our

strategy not only maximizes DSP utilization but also maximizes data reuse at the same time.

The host configures the overlay to compute a batch of output feature maps by sending a set of

suitable control words (refer Figure 2). The overlay uses the control words for hardware reconfig-

uration. The overlay acknowledges the completion of the configuration phase to the host. At this

point, the host packs the input feature maps and filter weights into a data stream. This data stream

is communicated to the overlay through the host driver. The processed OFMAPs from overlay are

transferred back to the host code via the driver. The OFMAPs are stored in the host memory to be

used as input to the subsequent layers.
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Fig. 3. The block diagram of our overlay. The control words dynamically configure the memory and the

compute modules. These configurations determine the runtime behavior of the overlay. The control words

for each module are stored in a register-based memory.

Overall, the host processes a CNN layer by layer. Each layer is further divided into batches. This

batching is done so as to maximize DSP utilization, data reuse and reduce the number of FPGA

invocations. The overlay is soft-reconfigured using control words to process a batch with a certain

filter and surface parallelism parameters.

5 OVERLAY MICRO-ARCHITECTURE

This section describes the micro-architecture of our overlay as shown in Figure 3. The host operates

the overlay through control words. A register-based control memory contains control words that

define the runtime configuration of the overlay. A dedicated set of control words configure the

overlay’s memory and processing engine modules depending on the compute schedule. Loading

up of the control memory marks the beginning of a new computation batch. Input to the overlay

is made up of filter weights and feature map values. The host streams this input data on a PCIe-

DRAM interface using the C++ driver. IFMAPs are buffered inside the overlay using line buffers.

Filter weights are stored using registers. In a steady-state, the line buffer generates SP surface

windows over an IFMAP. These windows are convolved with FP pre-fetched filter windows. The

resulting FP × SP convolutions are computed in parallel over the overlay’s PE. The output data

from the PE are packed into a SP × FP sized vector.

The partial OFMAPs rendered by the PE are accumulated in a memory block (Mem 1 in Figure 3),

built from the FPGA BRAMs. The channel summation module uses this memory to sum up, all the

partial OFMAPs corresponding to the input volume channels to produce the final output feature

map. The final OFMAP is passed through a set of stages representing the operations that typically

follow a convolution. The fusing of these operations greatly cuts down the need to re-fetch the

processed output volume. Depending on the network specification, these stages can be selectively

disabled, in which case they pass the input to the next stage without any modification. The final

output is stored in a memory block (Mem 2 in Figure 3) from where it is written to the FPGA

DRAM to be read by the CPU host driver.

In the following sections, we discuss the line buffer and PE modules in our overlay. We focus on

the reconfigurability aspect of each of these modules adding to the reconfigurablity of the overall

design.

5.1 Programmable Line Buffer

Exploiting kernel level parallelism is essential toward increasing the data reuse per input fetched

from the external memory. It is non-trivial to exploit full kernel level parallelism, amounting from
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Fig. 4. The line buffer pipeline inside our overlay that generates stencil windows over a streaming input

feature map.

a single K2 sized window, in overlay architectures, due to the variation in kernel sizes across

different CNN layers.

Previous approaches provide line buffers that are either limited to a single window per cycle

[7, 13], or support a specific window and/or image size. The work in [39], proposed a scalable

line buffer design that can generate multiple windows of arbitrary size. The design was purely

register based and had no support for windows moving with a stride greater than 1. We propose a

novel programmable line buffer architecture for our accelerator, that can generate multiple variable

sized windows over a streaming input source moving with stride values greater than 1. Our novel

hybrid design optimally uses both BRAM and registers to improve throughput as shown in Figure 4.

The generation of square windows by the line buffer facilitate full exploitation of kernel level

parallelism.

5.1.1 Buffer Architecture. Every cycle, the line buffer generates SP convolutional windows from

the IFMAP each of dimension K ×K . The input feature map is streamed to the line buffer in a row-

major fashion. The SP windows are generated along the vertical direction over the IFMAP. We

extract the surface windows in only one direction as it simplifies the flexible line buffer design.

This also relaxes constraint (4) from section 4.2. In a steady-state, our line buffer reads in S × SP
new inputs along S × SP rows of the IFMAP. The rows are buffered using an array of FIFOs. We

use a hybrid FIFO implementation. In each FIFO, the first B values are stored in registers and rest

of the row is stored in a BRAM block. Each FIFO is read from and written to independently. The

connections between the FIFOs is programmable through a flexible interconnection network. With

L FIFOs, l0 · · · lL−1, the line buffer can hold a maximum of L IFMAP rows at any time.

The line buffer needs to buffer a total ofZ rows andK columns (Z = K+S× (SP −1)) to generate

SP , vertical surface windows, moving with stride S . There is an overlap of K −S rows between two

vertically adjacent windows. The IFMAP is loaded in two phases. In the initial loading phase, the

rows are streamed sequentially until the first Z FIFOs of the line buffer are filled. After this, the

lateral loading phase starts, wherein the remaining rows are streamed. In this phase, every cycle,

S×SP values (one value from a different but adjacent row) are fed to the FIFOs lK−S though lZ . The

FIFOs support parallel read/writes. With every en-queue operation, the FIFO is also de-queued. As

the new data are en-queued to FIFO Li , the old data from Li are en-queued to FIFO Li−(S×SP ) . This

pattern ensures that the overlapping rows between the vertically adjacent convolutional windows

are preserved inside the line buffer. These connections vary with the value of S and SP , and are

enabled by setting the control words configuring the programmable all-to-all network between

the FIFOs. For example, in Figure 5(a), the new data are en-queued to FIFOs 2 and 3. The old data

from FIFO 2 and 3 are en-queued to FIFO 0 and 1, respectively. This replaces rows 0 and 1 in the

line buffer with rows 2 and 3.

In the lateral loading phase, with data in Z FIFOs, the line buffer outputs a Z × B window every

cycle. This is done by shifting out a column and shifting in a new column from across theZ FIFOs. A

total of B values can be read per FIFO because of the register storage. From the Z × B base window,
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Fig. 5. The line buffer is operating in two configurations generating 3 × 3 windows with different stride

values. The connection of the input to the FIFOs and connections between the FIFOs change with the stride

factor.

the sub-windows required to perform the convolutions are extracted. A set of copy registers, selects

the rows required per window. For example, in Figure 5(a), since two, 3×3 convolution with stride

1 needs to be executed, the first two copy registers are used. The first one selects rows 0, 1, and

2 from the base window and the second selected rows 2, 3, and 4. The selected rows are copied

into a vector register that is then passed through a dedicated masking register, that zeros out the

extra columns. The masked out rows within the vector register are appropriately shifted and later

added to construct a 1 × K2-dimensional vector Wl . We call Wl a window vector to mean that it

is logically a window but is physically stored in a vector register. All the input vectors required

to perform SP convolutions are aggregated/merged into a single vectorW = [WSP , . . . ,W1] with

SP × K2 elements in it. The vector thus constructed is passed to the PE.

The copy/mask/shift values and the FIFO inter-connections represent the dynamic configura-

tion of the line buffer. Knowing the kernel size and the SP value for a given computation batch,

the host logic generates these values. It passes them to the overlay as control words during the

configuration phase.

5.2 PE Architecture

The PE forms the core of our overlay, where the convolutions are processed. The PE receives SP
windows from the line buffer that are convolved in parallel with FP pre-fetched filter windows of

the same dimension. Depending on the computation batch, the PE can be configured to process any

mix of FP and SP values. Recall, that the windows emanating out of the line buffer are aggregated

into a vectorW = [WSP , . . . ,W1] and forwarded as input to the PE.

The PE is a fully pipelined structure. It consists of a distribution tree, a multiplier array, and a

reduction tree. The vectorW first enters the distribution tree, which creates FP replicas of the same

and distributes them over the multiplier array. The size of the multiplier array characterizes the

size of the PE. The PE design is entirely scalable depending on the DSP resources of the underlying

FPGA. A multiply unit multiplies an IFMAP value with a filter weight. Unlike the IFMAP values,

the filter weights are fed directly to the multipliers, bypassing the distribution tree. Using shift

logic, the PE loads filter weights from external memory into a register array. Each register in this

array is connected to an individual multiplier. The PE starts operating after loading the first FP
filters. As the PE convolves the IFMAPs with the current filter set, it pre-fetches the next set in the

same fashion, ensuring a compute-to-memory overlap. With the arrival of the IFMAP values, the
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multiplications are performed. The products are passed down to an additive binary reduction tree,

where they are combined to produce the convolution output.

A binary reduction tree can only reduce window vectors whose size is a power of 2. But such win-

dow sizes rarely occur in CNNs. The problem can be addressed by zero padding the window vectors.

This approach leads to sub-optimal utilization of PE compute resources. In our case, we achieve

optimal PE throughput by orchestrating the distribution of the products (multiplier outputs), cor-

responding to the windows vectors, over a complete binary tree in a clever fashion without any

padding, thus maximizing the compute utilization. We explain this data orchestration next.

Data Orchestration: The aggregate vector W is replicated FP times to facilitate convolution

with FP filters in parallel. This is logically equivalent to replicating each window vector Wi , 1 ≤
i ≤ SP , into FP copies, W j

i , 1 ≤ j ≤ FP . Thus, overall, a total of FP × SP window vectors are

created. Each window vector is further broken into smaller vectors whose size is a power of 2. For

example, a 3×3 vector is broken into two smaller vectors of size 8 and 1 each. In general, a K2

sized window is broken into at most w partitions, P0 through Pw , where w = �log2 (K2)	 − 1. The

partition Pm
i, j is related to the jth copy of the ith window vector and is of size m. This partition

constitutes a window vector if the logmth bit in the binary representation of the vector size is set.

Note that there will be a total of FP × SP partitions of a given size. In the proposed orchestration

strategy, the same-sized partitions from all the windows are packed adjacent to each other. The

partition groups are arranged in the decreasing order of their sizes from left to right. The filter

windows are pre-arranged by the host in the same data layout mentioned here and fed to the

multipliers directly during runtime. When SP > 1, SP copies of a partition from the filter window

is made using a Shift-and- Or logic and propagated internally between the multipliers. Once the

copies are propagated, the next partition belonging to the same filter window is loaded from the

host. A partition Pm of sizem is mapped tom multipliers. The multiplication of the filter weights

and IFMAP values corresponding to this partition creates a partial product vector of the same size.

Recall that the multiplier array forms the base of a complete binary tree, used for reduction. This

partial product vector is reduced to a single value using an appropriate subtree of the reduction

tree. Using this computational layout, there is no necessity for zero padding while computing

convolutions, thus optimal DSP utilization is achieved. For example, in a 3× 3 convolution window,

the partitions of size 8 and 1 are reduced by subtrees, that are complete binary trees, with 15 and

1 nodes, respectively. Since each multiplier is connected to a leaf node of the reduction tree, the

subtree mapping is done automatically based on where the partition lies within the layout.

5.2.1 Distribution Tree. The above data orchestration is realized in hardware, inside the PE,

with a distribution tree. The structure is organized as a complete binary tree. The number of leaves

is greater than or equal to the number of multipliers. The IFMAP values inside the aggregate vector

W , are routed through the distribution tree nodes to the multipliers through a sequence of shift

operations. Every tree node has two shift units and is configured with a specific shift value. Each

node performs a copy-and-shift operation wherein it makes two copies of the received vector, right

shifts each copy by its corresponding shift amount, and forwards the modified vectors across the

edges to both the children nodes. Note that a shift value of 0 on an edge results in copying the

input vector without shift. This is the default configuration of the distribution tree. Overall, there

can be a maximum of H vector transformations on a root to a leaf path. Here H is the height of

the distribution tree. Finally, each multiplier reads the first entry of the leaf-node vectors as input.

We further explain the details of the distribution tree logic using a running example, see

Figure 7(a), where K = 3, SP = 3, and FP = 1. The aggregate vector contains 27 IFMAP values

distributed across three window vectors W1, W2, and W3, each of size 9. Each window vector is

broken into 2 partitions of size 8 and 1. The data orchestration rearranges the window vector
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Fig. 6. The micro-architecture of the Processing engine. An example is shown on the right of how the distri-

bution tree distributes a window vector over 8 multipliers.

Fig. 7. (a) The distribution tree configuration for processing 3 convolutions with SP = 3, K2 = 9, and FP = 1.

(b) The reduction tree configuration for processing 3 convolutions with SP = 3, K2 = 9, and FP = 1. The

copy index is 1 throughout, since FP = 1.

partitions, W = P1
3,1P

8
3,1P

1
2,1P

8
2,1P

1
1,1P

8
1,1, and puts them in the decreasing order of their sizes (P8

1,1

occupies the least significant bits of W ) resulting in a transformed aggregate vector W
′
, where

W
′
= P1

3,1P
1
2,1P

1
1,1P

8
3,1P

8
2,1P

8
1,1. Each partition in W ′, from right to left, is mapped to a group of

multipliers/DSP. For example, the partition P8
1,1 is mapped to the first 8 multipliers and so on.

This mapping/data orchestration is achieved by using sub trees from the distribution tree. A

group of m multipliers is assigned a subtree, with its root located at level H − logm within the

distribution tree of height H . The root-node of the subtree receives a vector with partition Pm
i, j at

the lowest significant position, from the tree nodes above. The subtree is configured to route the

elements/values of the partition to the appropriate multipliers at the leaf level. Figure 6, shows a

subtree distributing a 8 sized vector partition over 8 multipliers.

At every node, the input vector is copied across the left edge and right-shifted across the right

edge. The shift amounts are adjusted such that desired value appears at index 0 of the vector in

the leaf node. The aggregate vector W is routed to the parent node of the subtree through the

default copy operation. It is right shifted, across the edge connecting the subtree, such that the

partition mapped to the subtree appears at the lowest significant position of the resultant vector.

In Figure 7(a), the partition P8
2,1 is mapped to the second subtree from the left. This partition appears
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after the partitions P8
1,1 and P1

1,1 insideW at the parent node of the subtree. Thus,W is right-shifted

by |P8
1,1 | + |P1

1,1 | = 9 units so that P8
2,1 appears at the lowermost eight positions of the resultant

vector at the root of the subtree.

Setting up the shift values corresponding to the subtrees and their parent nodes completes the

configuration of the distribution tree. The other nodes are left in the default copy propagation

mode. Using theK , SP , and FP values, the host sets up the shift values using control words, thereby

configuring the distribution tree for a new compute batch.

5.2.2 Reduction Tree. The partitions corresponding to a window are reduced to single values

inside a binary reduction tree. The reduced value rm
i, j corresponding to a partition Pm

i, j is gener-

ated at the logmth level. For example in Figure 7(b), the computations from the 8 sized partitions

P8
1,1,P8

2,1,P8
3,1 are reduced to the single values r 8

1,1,r 8
2,1,r 8

3,1 at the third (log 8 = 3) level of the reduc-

tion tree. All the reduced values corresponding to a window vector must be aggregated to produce

the final convolution output. This cannot be done inside the reduction tree, since the reduced

values lie at different levels, and no adder path exists between them. The reduced values from dif-

ferent levels are latched onto registers and passed through a shift and accumulate hardware that

performs the final aggregation.

5.2.3 Shift and Accumulate. The per-partition reduced values at various levels of the reduction

tree are latched on vector registers. The size of these vectors is set to the maximum number of

reduced values produced at any given level. These vectors are pairwise added, using a sequence

of shift-and-accumulate units, to create the final convolution outputs.

The shift-and-accumulate units are connected in a pipeline. A unit i adds the output of the pre-

vious unit with the vectorTi . HereTi stores the reduced values from the ith level of the reduction

tree. The location of the reduced values inside the vector depends on the tree level. For example,

in Figure 7, the reduced values in the first level vector T0 lie at positions 24, 25, and 26 respec-

tively. These values need to be aligned before the pairwise addition operation with the vector T3,

containing the reduced values corresponding to the eight sized partitions at positions 0, 1, and

2, respectively. Consequently, T0 is right-shifted by 24 units. The shift-and-accumulate sequence

adds both T0 and T3 to produce the final convolution outputs. For vectors that do not contain any

reduced values (T1 andT2 in the example) the corresponding shift-and-accumulate, performs a zero

addition, thereby forwarding the input unmodified to the next unit. The adder units are connected

in a pipeline through registers. In general, for the pairwise addition to happen correctly, with re-

spect to two vectorsTi andTj , j > i ,Ti needs to be right-shifted by p (i ) −p (j ) units. Here p (i ) and

p (j ) are the starting location of the reduced values within Ti and Tj , respectively.

5.2.4 PE Configuration. The shift values of the distribution tree and the shift-and-accumulate

stages represent the dynamic configuration of the PE. The host writes these values to control

words dedicated to the PE inside the control memory of the overlay. Therefore, configuring the PE

at runtime for processing a compute batch with a specific value of FP , SP , and K .

6 HANDLING SPECIAL CONVOLUTIONS

We optimize the processing of different types of convolutions by altering the basic processing flow

of our accelerator.

6.1 Pointwise Convolution Layer

Pointwise convolutions occur in MobileNet, ResNet, and YOLO. Since the kernel size is 1, every

convolution results in a single MAC operation. To achieve a high compute utilization for such

layers, the FP/SP value has to be increased. Recall that the output vector generated by the PE has
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FP ×SP elements, and each value is written in parallel to the PE memory. Therefore, an increment

in either FP or SP increases the compute utilization and the required memory bandwidth of the

PE linearly. This is different for layers with K > 1, where a single unit increment in FP/SP results

in quadratic (K2) improvement in the compute utilization but increases the memory bandwidth

requirement linearly. To achieve a similar utilization pattern, we exploit depth parallelism, CP ,

instead of surface parallelism, for pointwise layers. With every unit increase in FP , the compute

utilization increases by a factor of CP and the bandwidth requirement increases by 1 (the values

from CP channels adds up to a single output).

We exploit channel parallelism by feeding the PE with an input vector of size CP . The vector

contains data from CP adjacent IFMAPs of the input volume. Every cycle, the multiplier array in-

side the PE produces FP×CP values. TheCP values produced per convolution are added inside the

merge network of the PE to generate only one value that needs to be written to the PE output mem-

ory. Therefore, the overlay increases the computations by a factor ofCP with every increase in FP .

6.2 Depthwise Convolution Layer

Depthwise convolutions are found in sparse networks like MobileNet. In such a layer, each depth

of the input volume is convolved with a separate filter.

In such a scenario, the FP value is upper bounded by 1, as this is the maximum number of filters

that can be applied over a single surface, severely impacting the data reuse factor and bringing

down the achievable throughput. Our overlay overcomes this limitation by executing parallel filter

convolutions over different IFMAPs of the input volume. But the basic processing flow of our

overlay is geared toward processing one IFMAP at a time. To achieve channel parallelism, we

exploit the fact that, in general, a depthwise layer occurs after a regular convolution layer. Our

overlay executes both the layers in a pipelined fashion.

In this flow, the overlay retains the output surfaces rendered after the execution of FP filters

from the convolution layer, instead of flushing them to DRAM. The retained surfaces are passed

through a set of auxiliary MAC units. Each such unit is made up of a small line buffer and a

multiplier array. The filters from the next depthwise layer are applied over these surfaces, inside

the auxiliary MAC units, whose output is later flushed to the DRAM. After this, the accelerator

resumes the execution of the convolution layer with the leftover filter batches, followed by the

depthwise layer, continuing the zigzag pattern of execution.

6.3 Elementwise Addition Layer

The Elementwise layer occurs in networks like ResNet, Inception, and so on. In such a layer, the out-

puts from two or more previous layers are combined using simple elementwise operations like addi-

tion. These layers are mostly memory bound, since computationally they are simple but consumes

at-least twice the input compared to a normal convolutional layer. Also, in most settings, the par-

ticipating convolution layers are similar in structure concerning their kernel sizes. This is true for

ResNet, which has a branching factor of 2 and the elementwise addition layer receives input from

two pointwise convolution layers, each at a different branch. To increase the overall throughput

and reduce external memory traffic, both the input convolution layers are executed simultaneously

over the PE. Their outputs are later added inside the reduction tree. The simultaneous processing

is enabled in our overlay with an extra line buffer for streaming input to the other convolution

branch. The parallelism factors, FP , SP , and CP , are equally distributed between the branches.

7 EXPERIMENTS

We evaluate our overlay by synthesizing it for two Xilinx FPGAs, Virtex7-690t, and Ultrascale+

VU9P. We use 16-bit fixed-point precision for the accelerator. We employ the synthesized hardware
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Table 1. FPGA Resource Consumption of Our Accelerator on Both the FPGAs

% KLUTs Total
KLUTs

Kilo FF BRAM (36 Kb) DSP
Distribution

Tree
Reduction

Tee
Input
Logic

Output
Logic

Misc

Virtex7-690t 29.5% 40.1% 5.2% 10.1% 14.8% 223/693 405/866 911/1470 3072/3600
Ultrascale+VU9P 30% 40.3% 4.8% 10.5% 14.2% 448/1182 1112/2364 1836/2210 4096/6840

The % utilization of the FPGA LUTs, out of the total LUTs consumed, across different hardware modules of our

overlay is shown.

to process five networks namely, AlexNet [20], VGG16 [37], YOLO [33] MobileNet [18], and ResNet-

50 [17]. We have reported throughput (in GOps per second) for two cases: with and without fully

connected layers. When considering FC layers for overall throughput calculation, VGG-16 and

AlexNet undergo a reduction in throughput (only these two networks have FC layers among other

networks mentioned above). This happens because of the overlay’s restriction to process one batch

(B = 1).

Experimental set-up: Our overlay is synthesized at 166 MHz and operates with a data bit

rate of 16 bytes/cycle in the read and write direction. The combined bit rate of our overlay is

32 bytes/cycle. Therefore the overlay operates at a bandwidth of 10.6 GB/s (5.3 GB/s in each direc-

tion). We run our overlay on two FPGAs, a Virtex7-690t and an Ultrascale+VU9P FPGA that vary

with respect to the number of resources and the operational framework.

The Virtex7-690t FPGA is a standalone FPGA with 3600 DSP blocks and 6.4 MB of on-chip BRAM.

It is connected to an Intel Core-i5 processor through a PCIe-8x link. The code running on the CPU

streams input using PCIe to our overlay using the Xillybus PCIe core (http://xillybus.com/doc/

revision-b-xl). The ideal data bandwidth of the core operating on the Virtex-7 device with 8×Gen3

lanes, utilizing the Gen3 Integrated Block for PCI Express v3.0, can be expected to reach 6.4 GB/s

each direction (read from host and write to host), see http://xillybus.com/doc/xillybus-bandwidth.

The Ultrascale+VU9P FPGA is present on the Amazon Web Services (AWS) EC2 F1 instance

and has 6840 DSP blocks and 75.9 MB of BRAM. The overlay is wrapped in the standard AWS F1

Verilog wrapper that interacts with the AWS F1 shell to retrieve data from DDR4 memory. The

host code uses OpenCL to send data to the FPGA DDR memory and from there it is read over the

memory interface that provides a combined bandwidth of 16 GB/s.

We use Bluespec System Verilog [31] to design our hardware. All the reported hardware char-

acteristics of the design are obtained Post Place and Route in the Vivado Design Suite, Refer to

Table 1.

7.1 Performance Comparison with State-of-the-Art

We compare the performance of our accelerator with other recent works. As listed in Table 2, the

accelerator frameworks chosen for comparison come under two categories. In the Specific category,

the accelerators are tailor made for processing a specific network or a class of networks. In the

Generic category, the accelerators are designed as overlays and are network agnostic.

As can be seen in Tables 3, Table 4, Table 5, Table 6 and Table 7, our overlay outperforms most of

the frameworks across both the categories. With respect to the throughput metric in GOps per sec-

ond, we outperform generic/overlay accelerators by a factor of approximately 1.2× to 5× on both

the FPGAs. The highest speed up is observed for AlexNet and VGG-16, since these are regular

CNNs with canonical convolution layers. FPGA 2020 [48] achieves higher throughput, approxi-

mately 1.2× higher. This can be explained by the fact that it uses a low precision (8-bit) floating-

point quantization method to quantize both weights and activations. Our overlay, however, uses

a 16-bit fixed-point representation. We perform at-par compared to the work in [44], which uses

inter-layer parallelism on an FPGA cluster to do the processing. Our overlay operates at a slightly

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 34. Publication date: May 2022.

http://xillybus.com/doc/revision-b-xl
http://xillybus.com/doc/xillybus-bandwidth


34:18 Z. Choudhury et al.

Table 2. Classification of the Reference Works Into Network Specific

and Generic Processing Architectures

FPGA
2020
[48]

FGPA
2020
[51]

ICET
2020
[55]

VLSI
2020
[50]

IEEE
Trans
2020
[44]

FCCM
2019
[24]

FPL
2019
[49]

VLSI
2019
[30]

VLSI
2019
[22]

IPSJ
2019
[38]

FPL
2018
[56]

FPGA
2018
[29]

VLSI
2018
[26]

IEEE
Trans
2018
[4]

IEEE
Trans
2018
[41]

ICCAD
2018
[47]

Network
Specific

� � � � � � � � � �
Generic/
Overlay

� � � � � �

Table 3. Performance Comparison of Our Overlay for AlexNet with Other Recent Works

FPGA

2020 [48]

FCCM

2019 [24]

ICCAD

2018 [47]

IEEE Trans.

2020 [44]

IEEE Trans.

2018 [11]

IEEE Trans.

2018 [41]
Ours Ours

Architecture
Common,

B = 1

Without

FC

Common,

B = 4

Common,

runs on 15 FPGAs

Specialized P.E. for

different layers

Without

FC

Common,

B = 1

Common,

B = 1

FPGA XC7K325T
Zynq

ZCU102
Xilinx VU9P

Xilinx

XC7VX690T

Virtex 7

690t
Zynq 7045

Virtex 7

690t

Ultrascale+

VU9P

Throughput

GOps/s (GOPS)
1066.4 223.4 (C) 1432

1157

(Per FPGA)
910.2 197.4(C) 1030 / 1200 (C) 1356.57 / 1581 (C)

Precision 8b floating 16b fixed 16b fixed single floating point 16b fixed 16b fixed 16b fixed 16b fixed

Performance Density

GOPS/KLUTs
6.89 0.405 (C) 3.06 — 2.98 — 4.62 / 5.38 (C) 3.03 / 3.53 (C)

Performance Density

GOPS/DSP
1.388 0.195 (C) 0.317 — 0.305 0.220 (C) 0.33 / 0.39 (C) 0.29 / 0.34 (C)

Frequency MHz 200 200 200 — 150 125 166 166

Common signifies same architecture used for convolution and fully connected layer. B is an acronym for batch size. C

represents throughput for only convolutional layers.

The text in bold represent our numbers.

Table 4. Performance Comparison of Our Overlay for ResNet-50

with Other Recent Works

FPGA

2020 [48]

FCCM

2019 [24]

Resnet

FPL

2018 [56]

VLSI

2018 [26]

VLSI

2018 [26]
Ours Ours

FPGA XC7K325T
Zynq

ZCU102

Stratix-V

5SGSD8

Intel Stratix-V

GXA7

Intel Arria

10 GX

Virtex 7

690t

Ultrascale+

VU9P

Throughput

GOps/s (GOPS)
1101.9 291.4 973.2 243.3 611.4 902 1003

Precision 8b floating 16b fixed 16b fixed 16b fixed 16b fixed 16b fixed 16b fixed

Performance Density

GOPS/KLUTs
7.13 0.53 — 1.38 2.76 4.04 2.24

Performance Density

GOPS/DSP
1.435 0.255 0.579 0.950 0.408 0.29 0.22

Frequency MHz 200 200 200 150 200 166 166

reduced throughput for networks with special convolutions, i.e., ResNet, YOLO, and MobileNet.

We outperform the RTL-based overlay processor (OPU) in [50], which utilizes a fine-grained

instruction control mechanism to process the individual layers using different parallelism mixes.

OPU is an 8-bit accelerator. All networks are quantized to 8-bit precision for both kernel weights

and feature maps. We can perform two 8-bit MAC operations using a single DSP against a single

16-bit MAC operation. The effective memory bandwidth also increases by two times, keeping the

DSPs busy in computations. Further, the capacity of other resources such as BRAMs, flip-flops, and

so on, effectively doubles, and the placement/routing complexity reduces non-linearly. All these

factors contribute to higher throughput and a GOPs/DSP ratio. As can be seen in Tables 5 and 6,

the GOPs/KLUT of OPU (refer to the Table 3 of the OPU paper) is 4.1 and 3.8, which is comparable

to our 16-bit design. This highlights that our accelerator consumes less FPGA resources, which

can be attributed to the simple PE design and the control logic. OPU is more of an instruction
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Table 5. Performance Comparison of Our Overlay for VGG-16 with Other Recent Works

FPGA

2020 [48]

IEEE Trans.

2020 [44]

IPSJ Trans.

2019 [38]

VLSI

2020 [50]

FCCM

2019 [24]

VLSI

2019 [22]

ICCAD

2018 [47]

FPL

2018 [56]
Ours Ours

Architecture
Common,

B = 1

Common,

runs on 15 FPGAs

Without

FC

Common,

B = 1

Without

FC
Different

Common,

B = 4
Different

Common,

B = 1

Common,

B = 1

FPGA XC7K325T
Xilinx

XC7VX690T

Arria10

GX1150
XC7K325T

Zynq

ZCU102
XC7VX690T

Xilinx

VU9P

Stratix-V

5SGSD8

Virtex 7

690t

Ultrascale+

VU9P

Throughput

GOps/s (GOPS)
1086.8

1197

(per FPGA)
960(C) 354 / 397 (C) 309(C) 760.83 1510 1928 834.6 / 1025 (C) 1223 / 1503 (C)

Precision 8b floating single floating point 16b fixed 8b fixed 16b fixed 8b floating 16b fixed 16b fixed 16b fixed 16b fixed

Performance Density

GOPS/KLUTs
7.03 — 3.99 (C) 3.73/4.1 (C) 0.860 (C) — 3.06 — 3.74 / 4.60(C) 2.73 / 3.35(C)

Performance Density

GOPS/DSP
1.415 — 1.533 (C) 0.69 / 0.77 (C) 0.270 (C) 0.741 0.369 1.1 0.27 / 0.33(C) 0.26 / 0.33(C)

Frequency MHz 200 — 200 200 200 200 210 200 166 166

Different signifies different architecture used for convolution and fully connected layer.

Table 6. Performance Comparison of Our Overlay for YOLO-v2 with Other Recent Works

FPGA

2020 [48]

Tiny YOLO-v2

IEEE ICET

2020 [55]

VLSI

2020 [50]

IEEE Trans.

2018 [12]

VLSI

2020 [50]

Tiny YOLO

FPGA 2018 [29]

Lightweight

YOLO-v2

VLSI

2019 [30]

Tiny YOLO-v2

VLSI

2019 [30]

Slim YOLO-v2

Ours Ours

FPGA XC7K325T Zynq Ultrascale + XC7K325T XC7Z020 XC7K325T Ultrascale + Virtex-707 Virtex-707
Virtex 7

690t

Ultrascale+

VU9P

Throughput

GOps/s (GOPS)
1095.4 289 391 62.9 366 610.9 464.7 1877 1075 1649

Precision 8b floating 16b fixed 8b fixed 8b fixed 8b fixed (1-32,1-32) fixed (1,6) fixed (1,6) fixed 16b fixed 16b fixed

Performance Density

GOPS/KLUTs
7.08 3.04 4.1 2.11 3.8 4.52 5.40 12.11 4.82 3.68

Performance Density

GOPS/DSP
1.426 0.47 0.758 0.331 0.709 1.620 2.766 6.901 0.35 0.36

Frequency MHz 200 300 200 214 200 300 200 200 166 166

Table 7. Performance Comparison of Our Overlay for MobileNet v2 with

Other Recent Works

FPGA

2020 [51]

ArXiv

2020 [15]

FPL

2019 [49]

FPL

2019 [49]

FPL

2018 [56]

IEEE Trans.

2018 [4]
Ours Ours

FPGA XC7K325T
Stratix-10

2800

Xilinx

ZU9EG
ZU2EG

Stratix-V

5SGSD8

Arria 10

SoC

Virtex 7

690t

Ultrascale+

VU9P

Throughput

FPS & GOps/s

325.7 FPS

—

4539 FPS

—

809.8 FPS

—

205.3 FPS

—

—

592 GOPS

266.2 FPS

170.6 GOPS

272.87 FPS

830 GOPS

275.15 FPS

948 GOPS

Precision 8b fixed 16b fixed 8b fixed 8b fixed 16b fixed 16b fixed 16b fixed 16b fixed

Performance Density

GOps/KLUTs
— — — — — 2.08 3.72 2.12

Performance Density

GOps/DSP
0.14 — — — 0.319 0.133 0.27 0.21

Frequency MHz 200 390 333 430 200 133 166 166

set-based accelerator, while we use a simple set of control words that are driven by the host to

process the computations in different configurations. The Light-OPU [51] paper is a variant of the

original OPU paper that handles only light convolutional networks like MobileNet. In our case,

we can handle both dense nets like VGG-16 and light CNNs like MobileNet using the same micro-

architecture. LightOPU on MobileNet has a GOPS/DSP value of 0.14 while we achieve a value of

0.27 (refer to Table 7).

Overlay designs warrant high FPGA resources. Performance density with respect to the area

of an accelerator is measured in GOps per KLUTs. Our accelerator achieves better performance

density by almost a factor of 1.3× to 4×. A similar trend can be seen for performance density

values with respect to the DSP resources. This shows that compared to other overlay designs, our

design achieves higher throughput at lower resource consumption. Frameworks, like Reference
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[48], employing 8-bit inferencing has higher performance density values because of the smaller

data type. Compared to the Virtex7 FPGA, the performance density of our hardware is less on the

VU9P board. This is due to the inefficient PCIe bandwidth utilization using the Xillybus protocol

leading to the under-utilization of DSP blocks.

In the network-specific category, our overlay performs at par or better, compared to the other

accelerators. On the VU9P FPGA, we slightly outperform the TGPA heterogeneous accelerator [47],

running with batch size four, both in the throughput and performance density metric. We achieve

approximately 1.4× higher throughput compared to the work in [11], which proposed a pipelined

heterogeneous accelerator with different layers of a CNN mapped to different chip units within

the FPGA. The work in FPL 2018 [56] outperforms our overlay for VGG-16 as it uses an optimized

model for the VGG-16 network along with different hardware architectures for convolution layer

and FC layer. In the case of ResNet-50, our overlay has comparable performance with others.

Among all the CNNs, our accelerator reports the lowest throughput for MobileNet on both

the FPGAs. This is because of the presence of the depth-separable convolution layers. Although

we optimize the processing of MobileNet using the Zig-Zag processing flow, the alteration of the

pointwise and depthwise layers lowers the overall throughput. All the accelerators processing

MobileNet, considered in our comparison, fall under the network-specific category. These employ

techniques to optimize the sparsity factor of MobileNet, especially the depth-separable layers. Our

overlay achieves a throughput of 830 and 948 GOps/s on Virtex7 and VU9P FPGA, respectively.

As can be seen from Table 7, our overlay operates at par with the 16-bit accelerators but is

outperformed by the 8-bit accelerators. When comparing the results of both FPGAs, the number

of multipliers increases by 1.3×, resulting in 1.46× and 1.53× performance increase for VGG-16

and YOLO, respectively. Recall from Section 5, that at the end of processing a batch, all the

computational pipelines will be flushed, and at the beginning, the pipelines will again be filled

before a steady state is achieved. These overheads will be reduced as the number of batches

decrease. Hence more speed up compared to the increase in the multipliers is observed.

The results presented in this section are for a 16-bit version of our accelerator. Our hardware

design is parameterized to handle different fixed-point precision. For an 8-bit version, from a the-

oretical perspective, our accelerator reports 1.5× higher throughput than the 16-bit version. For

example, for AlexNet, the theoretical peak throughput on the Virtex7 FPGA is 1853 GOPs.

7.2 Architecture Analysis

In this section, we do an architectural analysis of our overlay. First, we observe how our overlay

reacts to changing External Memory Bandwidths (EMBs). Figure 8, plots the percentage DSP

utilization for each convolutional layer of AlexNet, VGG-16, YOLO, and MobileNet CNNs for dif-

ferent EMBs. We calculate the dynamic DSP utilization of the overlay. It is calculated by taking a

weighted average across the DSP utilization of all the compute batches of a layer. Note that, our

overlay employs greater number of DSP units, compared to the state of the art. Thus, maximizing

DSP utilization over other research works. In total, 360 DSPs are reserved for depthwise convolu-

tions appearing in MobileNet. These DSPs will be idle for regular convolutions and contribute to

10% of the total number of DSPs used in the overlay. Figure 8, provides a detailed DSP utilization

plot of the 3,072 DSPs, barring the 360 DSPs.

Based on the utilization plots in Figure 8, it can be seen that a CNN layer is either sensitive or

insensitive toward bandwidth change. Bandwidth-insensitive layers are those where our overlay

manages to maintain a comparable DSP utilization across different EMBs. Layers C6 from VGG-16

and layers C4, C6 from YOLO CNNs are examples of such layers. The insensitivity of these layers

can be attributed to the similarity in their compute schedules generated. Table 8 enumerates

the compute schedules for a few representative CNN layers across different EMBs. Notice that
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Fig. 8. Variation in DSP utilization with changing external memory bandwidth. The bandwidth is reported

as Bytes/Cycle fetched from external DRAM. The DSP utilization for MobileNet combines a depthwise and

canonical convolution layer under a single layer, since they are processed in a pipelined fashion.

Table 8. Enumerating Compute Schedules of Our Overlay against Different Convolutional Layers of

AlexNet, VGG-16, YOLO, and MobileNet CNNs

2 Bytes/Cycle 8 Bytes/Cycle 16 Bytes/Cycle

Schedule = iter x (FP, SP/CP*) Schedule = iter x (FP, SP/CP*) Schedule = iter x (FP, SP/CP*)

Alex VGG YOLO Mobile Alex VGG YOLO Mobile Alex VGG YOLO Mobile

C3
13x(28,1)

1x(20,1)
1x(128,1) 1x(128,1*) 1x(64,1)

1x(199,1)

1x(185,1)

1x(113,3)

1x(15,7)
1x(128,7*)

1x(56,6)

1x(8,7)

1x(341,1)

1x(43,6)

1x(85,4)

1x(31,11)

1x(12,15)

1x(128,15*)

1x(34,10)

1x(26,13)

1x(4,15)

C4
13x(28,1)

1x(20,1)
1x(128,1) 1x(256,1) 1x(128,1)

1x(199,1)

1x(185,1)

1x(113,3)

1x(15,7)

1x(170,2)

1x(85,4)

1x(1,7)

1x(113,3)

1x(15,7)

1x(341,1)

1x(43,6)

1x(85,4)

1x(31,11)

1x(12,15)

1x(170,2)

1x(85,4)

1x(1,15)

1x(31,11)

1x(85,4)

1x(12,15)

C6 1x(256,1)
1x(341,1)

1x(171,1)

2x(87,1)

1x(82,1)

1x(170,2)

1x(85,4)

1x(1,7)

1x(341,1)

1x(170,2)

1x(1,7)

1x(170,2)

1x(85,4)

1x(1,7)

1x(170,2)

1x(85,4)

1x(1,15)

1x(341,1)

1x(170,2)

1x(1,15)

1x(170,2)

1x(85,4)

1x(1,15)

C14
5x(100,1)

1x(12,1)

2x(81,1)

4x(13,1)

1x(341,1)

1x(170,2)

1x(1,7)

2x(81,1)

1x(38,1)

1x(14,2)

1x(341,1)

1x(170,2)

1x(1,15)

12x(81,1)

1x(38,2)

1x(14,4)

The * mark in a schedule signifies the channel parallelism factor.

the bandwidth-insensitive layers highlighted in the table have similar compute schedules. They

have a high degree of filter parallelism for the starting batches. For the final batch, the degree of

surface parallelism varies depending on the bandwidth. For example, the schedule generated for

layer C6 of VGG varies only in the final iteration, wherein the surface parallelism is maximized.

Our scheduling logic compensates for the bandwidth deficiency by increasing the degree of filter

parallelism. But this can only be leveraged for layers with a high compute to memory overlap. As

can be seen from the compute-to-overlap constraint in Equation (6) from Section 4, the higher

degree of filter parallelism is balanced by a higher output dimension, OL2 value, in the inequality.

Therefore, bandwidth-insensitive layers occur at the front of a CNN where the surface dimensions

are comparatively larger. As we move toward the end layers, where the input dimensions are

small, the compute to memory ratio decreases, and the layers become sensitive toward bandwidth
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Table 9. The Table Lists the Compute

Cycles (CC), Memory Cycles (MC),

and Pipeline Efficiency (PEF) for

Processing Various CNNs

Virtex7 690-t

CC

(×103)

MC

(×103)

PEF

(×103)

Latency

(ms)

AlexNet 1068.4 210 82 6.5

VGG-16 6698.7 976.2 78 40.2

ResNet-50 3157.8 744.8 55 19.1

MobileNet 2892.5 1034.8 60 17.2

YOLO-V2 10133.1 2077.3 79 60.8

Table 10. Comparison of Static and Dynamic

Scheduling in Our Accelerator

Static Scheduling Dynamic Scheduling

Network
Config

(FP, FS)

Throughput

(GOps/s)
Calls

Throughput

(GOps/s)
Calls

AlexNet (77,4) 1098 27 1200 18

VGG-16 (32,10) 995 141 1020 30

YOLO-V2 (256,1) 820 111 1075 72

Resnet-50 (128,2) 710 264 902 85

Mobile-Net (86,3) 720 114 830 61

change. This can be clearly observed for all the networks in Figure 6. Also, as can be seen from

Table 8, the sensitive layers, for example, C14, have very different compute schedules for different

memory bandwidths. Kernel size also affects the compute to memory ratio, thereby affecting the

utilization. For example, all the pointwise layers in the YOLO CNN are bandwidth sensitive. The

channel parallelism factor, see layer C3 of YOLO CNN in Table 8, varies with the bandwidth in the

compute schedules of the pointwise layers.

Recall from the earlier discussions that the compute schedules for our overlay are generated

such that the pipeline stalls are minimized. If the average DSP utilization of the design is A oper-

ations per cycle, then the pipeline efficiency is defined as A/NDSP where NDSP is the number of

DSPs on the FPGA. NDSP operations per cycle is the theoretical maximum operations throughput

achievable. The average DSP utilization A is computed by dividing the total number of operations

in the CNN by the total execution cycles (compute and memory). As can be seen from Table 9, the

overlay sustains a pipeline efficiency of approximately 80% for AlexNet, YOLO, and VGG-16 CNNs.

For the smaller networks, ResNet-50 and Mobile-Net, we see a dip in the efficiency, which can be

attributed to the presence of depthwise sparse convolution and element wise convolution layers

in these networks. With respect to the FPGA, the pipeline efficiency is slightly lower for the VU9P

board. This is due to the inefficient PCIe bandwidth utilization leading to the under-utilization of

DSP blocks.

We next contrast the effectiveness of a static schedule, prevalent in most accelerator designs,

against a dynamic schedule (proposed in this work) in processing CNNs. We run our accelerator

in static mode for this experiment. For a given CNN, a fixed schedule is used to process all the lay-

ers in the static version. The fixed schedule is generated by first choosing the SP/CP/FP value that

maximizes the throughput of a single layer. Then, from among all the CNN layers, the schedule

that maximizes the total throughput of the entire network, i.e., all the layers combined, is chosen.

As can be seen in Table 10, there is a throughput drop of 100 to 200 GOps/s between both the

schedules. The lowest throughput drop is seen for VGG-16, as it is a relatively uniform CNN, and

the same schedule suffices to extract fairly good throughput for all the layers. The throughput drop

is more significant for non-uniform networks like ResNet/Mobile-Net that vary in kernel dimen-

sions and convolution types. Another essential comparison metric is the number of accelerator

invocations/calls that the host makes to process a complete CNN. As can be seen, compared to the

dynamic schedule, the static schedule results in 1.3× to 3× higher accelerator invocations. Higher

invocations result in more processing latency due to the long communication setup time between

the host and the FPGA. Compared to the static schedules, the dynamic schedule can better adapt

to varying computation shapes across the layers, which enables it to process more computations

per batch, resulting in fewer batches.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 34. Publication date: May 2022.



An FPGA Overlay for CNN Inference with Fine-grained Flexible Parallelism 34:23

8 CONCLUSION

In this work, we presented an FPGA overlay for CNN inference. Apart from regular convolutional

layers, our overlay can handle point and depth separable layers. The synthesized architecture is

dependent on the available FPGA resources alone and is agnostic to any specific CNN. The host

machine configures the overlay through control words on a per layer basis so as to maximize the

throughput based on the layer characteristics. These configuration parameters, surface and filter

parallelism degrees, are determined through a constraint satisfaction problem.

The performance of the overlay for various CNNs are thoroughly analyzed and their perfor-

mance is compared against the theoretical limits obtained using hardware performance counters

in the design. For future work, we plan to extend our synthesis framework to include emerging

convolutional layer types such as grouped and shuffled grouped convolutions.
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