
IIBLAST: Speeding Up Commercial FPGA Routing by
Decoupling and Mitigating the Intra-CLB Bottleneck
Shashwat Shrivastava∗, Stefan Nikolić∗, Chirag Ravishankar†, Dinesh Gaitonde†, and Mirjana Stojilović∗

∗EPFL, †AMD
{shashwat.shrivastava, stefan.nikolic, mirjana.stojilovic}@epfl.ch, {chirag.ravishankar, dinesh.gaitonde}@amd.com

Abstract—We identified that in modern commercial FPGAs, routing
signals from the general interconnect to the configurable logic blocks
(CLBs) through a very sparse input interconnect block (IIB) represents
a significant runtime bottleneck. This is despite academic research usually
altogether neglecting the runtime of last-mile routing through the IIB.
To alleviate this bottleneck, we combine computer-aided design (CAD)
and FPGA architecture enhancements. We propose a multi-stage FPGA
routing approach, based on the premise that once the signals are legally
routed in general interconnect—only reaching the inputs of the IIB, but
not the final targets—the remaining last-mile routing through the IIB
can be completed efficiently and independently for each FPGA tile. Then,
the final routing solution can simply be built by joining the previously
obtained partial solutions. However, we observe that some properties of
modern IIB architectures limit the success rate of the intra-CLB routing,
creating the need for revisiting the routing in the general interconnect
and inevitably impairing the multi-stage routing runtime gains. We show
that an enhanced IIB architecture mitigates the issue at a minimal cost.

With ISPD16 benchmarks and an FPGA architecture model closely
resembling AMD UltraScale FPGAs, we demonstrate the dominant
contribution of last-mile routing to the router’s runtime. After applying
our multi-stage routing approach and the proposed enhancements, we
show that the observed bottleneck can be mitigated, resulting in 4.94×
faster routing on average.

Index Terms—CLB, congestion, FPGA, IIB, routing

I. INTRODUCTION

It is well known that routing, besides placement, takes up an im-
portant part of the field programmable gate array (FPGA) computer-
aided design (CAD) flow runtime [1], [2]. Although there are a
number of published attempts at parallelizing routing [3], for highly
congested designs—which are the truly relevant ones as they drive
the runtime up—there are too many conflicting nets preventing
the common workload-partitioning methods from being effective.
On the other hand, FPGA placement is much more amenable to
parallelization [4], and it is only expected that the share of the runtime
for routing will keep increasing. That is unless something is radically
changed in routing, which is precisely what this paper attempts.

The main premise behind this work is that routing itself has a
major runtime bottleneck created by the way in which commercial
FPGA architectures are designed. Before experimentally identifying
this bottleneck, in this section, we back up our expectations by
analyzing qualitatively the main aspects of these architectures and
how they impact the routing process.

A. Highways and City Streets: Organization of FPGA Interconnect

FPGA routing architecture can conceptually be divided into two
main parts: 1) general interconnect, which steers a signal from its
source to its target logic cluster (CLB) and 2) input interconnect
block (IIB), which dispatches it to its final destination within the
logic cluster. This is illustrated in Fig. 1 and will be discussed in more
detail in Section II-A. Very loosely, we could consider the general

This work is partially supported by the Swiss National Science Foundation
(grant No. 182428).

II
BCLB CLB

II
BCLBII
B

SB

II
B

II
B

II
B

SB

SB

SB

SB

SB

CLB

CLB

CLB

CLB

CLBCLB

II
B

II
B

SB

SB

II
B

Fig. 1: High-level view of the CLBs and the FPGA interconnect.
Routing multiplexers are organized in two groups: input interconnect
blocks (IIBs) and switch blocks (SBs).

interconnect and the IIB as analogous to a highway network and a
city street network, respectively: although cars traveling between two
cities spend the majority of their time on highways, each of them has
to pass through a set of city streets to reach the destination address.
The IIB is usually organized as a two-level multiplexing structure
like the one shown in Fig. 2.

B. A 10,000 Foot View of FPGA Routers

We will review the principles of congestion negotiation [5]—which
most modern FPGA routers are based on [6]—in more detail in
Section II-B. For now, it is sufficient to note that signals are routed
iteratively, one at a time, each using the shortest path through the
available routing resources. Whenever a signal is traced through a
particular resource u, u’s cost is increased so that the other signals
are incentivized to avoid it. However, it may still happen that two
signals overlap on any given resource, which creates congestion [7].
In case of congestion, the overlapping signals must be ripped up and
rerouted, in the hope that this time the conflict will be avoided [5].

Two main factors impact the runtime of an FPGA router: 1) the
number of times each signal has to be rerouted because it overlapped
with another and 2) the number of resource expansions that the
shortest-path algorithm needs to make while seeking the path through
the programmable interconnect that will connect the signal’s source
and destination (sink) endpoints, fixed during placement.

C. Do Not Plan the Streets Before the City is Reached

Returning to the loose road network analogy, routing a circuit on
an FPGA could be considered analogous to planning routes for a
multitude of cars in a centralized manner, such that traffic jams are
prevented in every highway section and every city street. Most of
the time, when a congestion-free route plan has been created for
the highway network, completing the plan within the city street
network will be possible without reconsidering the distribution of
cars among the highway exits, which would require updates to the
highway network plan. In other words, routing through the highway

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r A

id
ed

 D
es

ig
n

(IC
CA

D)
 |

 9
79

-8
-3

50
3-

22
25

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

CA
D5

73
90

.2
02

3.
10

32
38

97

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:17:32 UTC from IEEE Xplore. Restrictions apply.

6:1

inmux_1

6:1

inmux_2

6:1

inmux_64

64 32

short channel wires

64 16

H6

H1

6

6

H

4

6:1

HX

byp_15

6:1

6:1

HI

byp_16

6

6

A6

A1

6

6

A

4

6:1

AX

byp_1

6:1

6:1

AI

byp_2

6

6

4

4

4

6:1

6:1

6.25%

6.25%

3.125%

9.375%

33% on average

17.84% on average

34.11% on average

population density

effective combined
population density
without passing
through byp muxes

Logic
Element

Logic
Element

Fig. 2: Detailed IIB. In blue, feedback connections. In green, bypass
pin connections. In red, channel wires spanning one or two tiles.

and the city street networks can be planned largely independently.
This is the main idea which we build upon in this work.

However, standard commercial FPGA routers do not apply this
split, instead they route each signal until the target pin, every time
it is ripped up. To reach the target pin within the target CLB, the
signal has to pass through an IIB. Each time there is an overlap
in the general interconnect and a signal has to avoid a resource
that it used previously, the downstream portion of the path has to
be rerouted as well; at the very least, that includes routing through
the IIB. Already this hints at the possibility of intra-CLB routing
being the runtime bottleneck. Unfortunately, problems with intra-CLB
routing do not stop with the frequency at which it is required. To limit
the number of expansions while finding the shortest paths, FPGA
routers usually rely on A*, with the heuristic being related to the
minimum distance from the current to the target cluster [1]. This is
very effective for the path’s portion through the general interconnect,
but once the signal reaches the target IIB, any heuristic based on
minimum cluster distance is of no further use—inside the IIB, the
shortest path algorithm reduces to Dijkstra.

Considering that the IIB has a depth of two and taking into
account the number and small size of multiplexers shown in Fig. 2,
representative of AMD UltraScale FPGAs [8], we can conclude that
the absence of A* inside the IIB is unlikely to be a major concern.
As will be shown in Section VI, when perceived in isolation, it is
not. However, when coupled with the frequency at which IIB routing
is typically required, the absence of A* is strongly felt.

The same small multiplexers of commercial IIBs that help node ex-
pansion reduction while routing with no or ineffective A* complicate
the issue regarding reducing the number of times each signal has to be
ripped up. Namely, the limited number of routing possibilities through

a sparse commercial IIB increases the likelihood of congestion,
causing more rip-ups, often in the general interconnect as well.

D. Exploiting the Analogy

In this paper, we build on the intuition developed in this section
and, in Section V, demonstrate experimentally that repeated IIB
rerouting is a major runtime bottleneck. Then, in Section VI, we pro-
pose a new multi-stage routing algorithm that leverages the highway
and city street analogy we introduced above to resolve the identified
bottleneck. Essentially, we take the approach of early versions of the
Versatile Place and Route (VPR) academic FPGA router, developed
at the time when IIB architectures were fully connected [7]: routing
all signals only until the IIB boundary, knowing that routing through
the IIB itself could always be done because the structure is fully
connected. For modern, very sparse IIB architectures such as the one
shown in Fig. 2, we, of course, cannot know that all signals could
be routed until their target CLB pins without creating overlaps, for
any combination of IIB pins through which they enter the cluster.
However, in this work, we assume that almost always, the sparse IIB
would offer enough flexibility to complete the routing until the target
pins without having to reroute the paths in the general interconnect.
This is very similar to assuming that city street networks are usually
flexible enough to complete a congestion-free last-mile routing for
any reasonable distribution of cars among highway exits leading to
the city. That assumption allows us to completely ignore IIB routing
in Step 1 of the proposed multi-stage algorithm, much like VPR used
to do. But, as the sparse commercial IIBs are not guaranteed to be
able to complete the routing, in Step 2 we route independently each
intra-CLB routing problem as well. Finally, given the IIB’s sparsity,
for some CLBs, a legal routing solution is inevitably impossible to
find. After composing all subproblems into a single partially legal
solution, we fully legalize it by incremental rerouting in Step 3.

The extent to which our assumption that most IIBs can be routed
independently in practice actually holds is reflected on the time taken
for this final incremental rerouting. After presenting the results of
applying the proposed multi-stage routing algorithm (Section VI),
and analyzing some causes of assumption violation, we suggest a
relatively low-cost architecture enhancement that greatly increases the
effectiveness of the algorithm (Section VII). Finally, after discussing
the relation of our contribution to prior work in Section VIII, we
conclude in Section IX.

II. PRELIMINARIES

Before quantifying the bottleneck that routing through the com-
mercial sparse IIBs presents, we need to build a model of the
representative commercial FPGA architecture, including the realistic
IIB, and set up the software environment to run the routing. As
common in academic research on FPGA architecture and CAD, we
use the open-source Verilog-to-Routing (VTR) tool flow [1], which
includes VPR for placement and routing. In this section, we describe
the FPGA architecture modeling and the VPR implementation of the
PathFinder negotiated routing algorithm.

A. FPGA Architecture and Modeling

We explore FPGA architectures closely resembling those of the
AMD UltraScale family [8]. Island-Style FPGAs [9], including Ultra-
Scale, are constructed by abutting a number of identical tiles, as was
illustrated in Fig. 1. The typical FPGA tile consists of a Configurable
Logic Block (CLB), wires grouped in horizontal and vertical routing
channels, a large number of routing multiplexers split into the IIB,
which has already been presented to some extent in Section I, and a

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:17:32 UTC from IEEE Xplore. Restrictions apply.

3
AWF

FF1

FF2

AQ

A

AMUX

AQ2

6-LUT
A6:1

AX

AI

O6

O5
6:1

6:1

6:1

Fig. 3: Single logic element of a CLB in the UltraScale FPGA
architecture. The bypass inputs AX and AI provide direct connections
between the general interconnect and the flops. Carry and wide-
function logic, which drive the remaining inputs (AWF) of the three
multiplexers [11], are not shown.

switch block (SB), which contains all of the multiplexers that drive
the channel wires, taking inputs both from other channel wires and
the CLB itself.

1) General Interconnect: All FPGA architectures that we will
model in this paper share a common general interconnect architec-
ture [8]; that is, their channel wires and SB multiplexers are the same.
Wires come in lengths one, two, four, and twelve (determined by the
number of SBs they span). Each tile contains eight instances of a
wire in each length-direction. CLB inputs are driven by length one
and two wires only. A detailed description of the general routing
architecture is available in our artifact repository [10].

2) Logic Elements: In the UltraScale architecture, a CLB contains
eight logic elements (LEs), labeled A–H in Fig. 2. The main compo-
nents of an LE, as shown in Fig. 3 for logic element A, are one 6-input
dual-output Look-Up Table (LUT), two flip-flops (FFs), and several
multiplexers. Apart from the six inputs of the LUT, each LE has two
additional bypass (BYP) inputs (X and I), allowing the FFs to be
driven independently of the LUT. This arrangement benefits highly-
pipelined designs and permits better utilization of the resources [8].
Therefore, the city streets in our analogy need to be able to service
64 destinations.

3) IIB Internals: Let us now briefly return to the IIB of Fig. 2.
It is dimensioned to receive signals from 64 wires in the global
interconnect and to route them to 64 destinations inside the CLB.
Indicated in green are the second-layer multiplexers that feed the
bypass inputs. What differentiates them from the other second-layer
multiplexers is that their outputs are fed back to the first layer; each
first-layer multiplexer receives one input from a bypass multiplexer.
This allows signals to enter the cluster from the general interconnect
through some first-layer multiplexer, from which the target pin is not
directly reachable, but eventually reach the target through a (number
of) bypass multiplexer(s). In other words, once cascading through the
bypass multiplexers is considered, all channel wires can reach any
LUT input. In this way, the connectivity of the commercial IIBs is
greatly extended without any increase in the number and size of its
constituent multiplexers. However, it must be noted that the number of
bypass multiplexers is fairly small, meaning that if many signals enter
the CLB through a first-layer multiplexer far from the final target,
bypass multiplexers can quickly become congested. To make the sit-
uation even more difficult, whenever the FFs are used independently,
corresponding bypass multiplexers become unavailable for first-layer
multiplexer switching; at that point, the only remaining solution is

for the router to reroute the signals further upstream in the general
interconnect. Unfortunately, in modern, highly pipelined designs, it
is rather common for the FFs to be used independently [8], [12].

To construct the IIBs and SBs which conform to the above
descriptions and that we can make openly available, we use the
algorithm of Lemieux and Lewis [13], which also allows us to sweep
the space of architectural choices and evaluate their impact. Even
though the connectivity patterns in real devices are slightly more
constrained because of specific wirelength requirements and physical
limitations, the metrics of interest for this work are comparable
between the modeled and real architectures. In the remainder of the
paper, we keep our focus on the modeled architectures.

4) Routing Architecture Modeling: In VPR, the FPGA intercon-
nect architecture is modeled as a directed Routing-Resource Graph
(RRG), in which channel wires, primitive pins (e.g., LUT inputs
and outputs), and the outputs of first-layer multiplexers in the IIB
are represented as nodes. Additional virtual nodes represent the
swappability of LUT input pins [7], [14]; in our model, for simplicity,
we consider all six inputs of the dual-output LUT to be permutable.
Edges model programmable connections between the nodes.

In VPR, IIB-like structures are usually described by listing the
appropriate multiplexers within the CLB itself, so that they are only
visible to the packer and not to the router [15], thus excluding routing
through IIB. We circumvent this by exposing the IIB outputs to the
general interconnect and representing the IIB multiplexers as separate
nodes in the RRG, like Moctar et al. suggest [16]. The same approach
has been used by the SymbiFlow project, which provides support for
implementing designs on AMD 7-Series FPGAs using VPR [17].

B. Negotiated Congestion Routing

Similarly to commercial FPGA routers [6], VPR router is based
on PathFinder negotiated congestion algorithm [5], which iteratively
finds the shortest paths in the RRG for all source-sink pairs in the
routing problem, one at a time. Each shortest path is sought using an
A* algorithm. Each node is associated with a cost and while routing,
a heap structure is employed to keep the relevant nodes sorted by
their cost. While searching for the shortest path, the router iteratively
pops the cheapest node from the heap, then pushes all of its unvisited
children onto the heap until the target is reached [1]. Since each signal
is routed in this greedy fashion, overlaps between signals can occur;
overlaps represent congestion and constitute a legality violation. The
cost of congested nodes is then gradually increased, in proportion
with the number of signals that use the given node [5]; as a result,
the subsequently routed signals are redirected toward unused nodes.
Once all of the signals are routed, at least those which use congested
nodes are ripped up [1] and routed again in the next iteration. Between
two routing iterations, the cost of congested nodes is further increased
to drive the algorithm towards converging to a legal solution.

The router runtime is clearly determined by two effects: the number
of shortest paths that need to be found (including those that must be
ripped up and rerouted), which is directly related to the amount of
congestion present in the RRG, and the number of RRG expansions
required to find each shortest path. The structure of the IIB plays an
important role here: sparser connectivity can increase the number of
nodes that have to be expanded to reach the target, and it can also
lead to fewer possibilities to route each signal, potentially increasing
the congestion and driving the rip-up count up. On the other hand,
higher fanouts increase the number of nodes that must be pushed
onto the heap on each expansion. To measure the architecture impact
on the router performance, we will report the runtime and the heap
operation count (the latter being a machine-agnostic metric).

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:17:32 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Characteristics of ISPD16 contest benchmarks [18], [21].

LUT FF RAM DSP

Min 50K 55K 0 0
Max 500K 602K 1000 600

Average 327.5K 291K 675 450

III. EXPERIMENTAL SETUP

All the experiments described in the subsequent sections use the
experimental setup described here. The experiments are run on an
Ubuntu 22.04 LTS machine equipped with Intel(R) Xeon(R) CPU
E5-2680 v3 @ 2.50GHz (24 cores, 48 threads) and 256GB RAM.
Using the VPR router (commit No. 33c518fc6) as a foundation,
we provide the artifacts to reproduce the paper’s results [10]. As
benchmarks, we use openly-available circuits from the ISPD16 design
contest on routability-driven FPGA placement (by Xilinx/AMD) [18],
their corresponding UTPlaceF placements [19], and the UltraScale
architectural model (with FPGA size 168×480) from the VTR
repository. Table I highlights the characteristics of the benchmarks.

To import the placements, we first pack all LUTs and FFs placed in
the same CLB into a single CLB primitive. This netlist is converted
from the bookshelf to the blif format using the script provided in
the VTR repository [1]. VTR can then convert the packing into the
required format by trivially rewriting it (each primitive in the packed
netlist can be converted into exactly one block by VTR). Finally, we
convert the placement provided by UTPlaceF to the required format,
making it compatible with the VTR-rewritten packing.

The UltraScale architectural model in the VTR repository is
intended for placement and, consequently, lacks a realistic model of
the interconnect architecture (the connectivity and delay information
are not completely and appropriately specified). To overcome this
issue, we include the interconnect model described in Section II-A
through an external file describing the corresponding RRG, much like
it is done by the SymbiFlow project, for example [17].

Lastly, being intended for routability-driven placement, ISPD16
benchmarks lack timing information. They are examples of difficult-
to-route designs for which the routing runtime and wirelength are
of higher concern than the critical path delay. Many practical FPGA
applications fall in this category, notably ASIC emulation and FPGA
hardware prototyping [20], for which routing runtime is one of
the key factors determining the time to market. The experiments
presented in this paper will, therefore, thoroughly evaluate how
suitable our novel routing approach is for large and challenging to
route, but not timing-critical designs.

IV. ENHANCING THE BASELINE

To ensure a comprehensive evaluation of the runtime improvements
discussed in this paper, a fair baseline is required. Through exper-
imentation, we have found that adjusting some of the VPR router
parameters reduces its runtime. This section explains our findings.

During routing, nodes of the RRG are assigned costs which help
resolve congestion by increasing the cost of congested nodes and
determining the shortest path by considering lower-cost nodes. In
VPR, the cost is a function of present and historical congestion; the
former is updated after a signal is routed, while the latter is updated
between two subsequent routing iterations. The overall cost of a node,
which determines where the node will be inserted in the ordered
heap, depends not only on the two previously mentioned factors but
also on a router lookahead—that is, the A* heuristic. The lookahead
estimates the cost of a path from a node until the target pin. The node

cost, the lookahead estimate, and the actual cost of the path from the
source pin to the node are accumulated to compute the total cost of
the node when inserting it in the heap [1]:

TotalCost(u) =PathCost(source, u)+

α(u) · pres fac · (1 +NumSignals(u))+

Lookahead(u, target).

Here, we use α(u) to designate the product of the base cost
and the historical congestion cost of a node u [7]. The number of
signals using any given node of the RRG can vary vastly during the
routing process; very often, no signal will use it. Hence, to make
the A* heuristic admissible, the lookahead—based on the cost of the
shortest possible path between all pairs of CLBs in the given FPGA
architecture [1]—has to be computed while assuming that all nodes
are unused. It has long been thought that increasing pres fac at
every iteration by multiplying it by some constant > 1 (1.3 being the
default in VTR-8 [1]) leads to removing congestion faster by making
the router focus on eliminating congested hotspots rather than trying
to let each signal keep its preferred routing resources [5]. However,
when the design is severely congested, it takes many iterations to
remove overlaps, causing an exponential increase in pres fac and
making it overshadow the lookahead. As a result, the shortest path
algorithm is reduced from A* to Dijkstra. Hence, on large designs,
increasing pres fac may help in reducing the number of iterations
taken to converge, but the time taken to find each individual path is
often increased.

To overcome the issue, we need to prevent pres fac from in-
creasing beyond a point that would make A* ineffective. We do so
by fixing it to 5—the value previously used by Zha and Li [22]—
and retaining it throughout the routing process. Contrary to us, Zha
and Li fixed pres fac to a single value to reduce critical path
optimization variability and not improve runtime. In fact, they even
mention that fixing pres fac could often lead to an increase in
runtime [22], which is true for small designs with low congestion that
have short paths and take only a relatively small number of iterations
to converge—these are precisely the circuits for which PathFinder
was originally developed [5].

Our second modification concerns the strategy for ripping up and
rerouting congested signals. The latest VTR release incorporates an
efficient routing strategy known as the Adaptive Incremental Router,
which reduces computational effort during each routing iteration by
selectively ripping up sub-trees of nets and subsequently rerouting
them [23]. By default, VPR applies partial rip-up only to nets with a
fanout exceeding the threshold of 16 [1]. However, we have observed
that reducing the threshold reduces router runtime. Consequently,
we set the min incremental reroute fanout threshold to the
minimum possible value of one. After incorporating the above-
described enhancements, we observe, on average, a reduction of heap
pushes and pops by 2.3× and 3.6×, respectively, which leads to a
4.9× reduced runtime. In the remainder of the paper, we use the
modified parameters and report all the results assuming this new,
enhanced baseline.

V. QUANTIFYING THE IIB ROUTING BOTTLENECK

Having tuned VPR to route highly-congested benchmark circuits
efficiently, we are ready to measure the impact of a realistic sparse
IIB architecture on router performance. Starting from the architecture
model described in Section II-A, we create two target RRGs. In the
first, IIB connectivity is modeled according to Fig. 2 and referred
to as IIB-6-2L (six-input multiplexers, two levels). In the second,

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:17:32 UTC from IEEE Xplore. Restrictions apply.

01 02 03 04 05 06 07 08 09 10 11 12 GM
ISPD16 Benchmarks

0

4

8

12

16

20

24

28

32

Ra
tio

 o
f I

IB
-6

-2
L

vs
 Fu

ll
IIB

4.
7

10
.4

6.
0

Nodes pushed to the heap
Nodes popped from the heap
Runtime

Fig. 4: The ratio of the number of heap pushes, pops, and routing
runtime for IIB-6-2L vs. Full IIB across ISPD16 benchmarks.

we effectively create a full-crossbar IIB by connecting all adjacent
length-1 and length-2 routing channel wires to each target pin inside
the CLB (i.e., each LUT input and each FF direct-access pin). We
compare the runtime metrics of IIB-6-2L to this full-crossbar IIB
(Full IIB) to estimate the routing effort required to legalize through
IIB-6-2L. In fact, the comparison is even slightly pessimistic since
the targets are CLB and not IIB inputs, meaning that every shortest
path receives an extra level of node expansions before it is found.

Fig. 4 summarizes the results (the data for benchmark 12 is not
shown because, after 1,000 iterations, the routing did not converge
to a legal solution). When the router is instructed to complete the
entire routing, including the part through the IIB (i.e., on the IIB-
6-2L RRG), the geometric mean (GM) of heap pushes, pops, and
runtime increases by 4.7×, 10.4×, and 6×, respectively, compared
to the situation when we stop the routing at the IIB boundary (i.e., on
the Full IIB RRG). This confirms our intuition that routing through
the IIB is computationally expensive, contributing to a large runtime
increase. In the next section, we introduce our multi-stage routing
approach for resolving this bottleneck and speeding up the routing.

VI. MULTI-STAGE ROUTING

A. Overall Idea

To leverage the runtime advantage associated with bypassing IIBs
during routing, we divide the routing into three steps, illustrated in
Fig. 5. In Step 1, signals are routed through the general interconnect,
stopping at IIB boundaries (example signals are shown in blue at the
top right in Fig. 5). At the end of this step, no congestion is present
in the general interconnect, and IIB input pins for intra-CLB routing
are determined.

In the following Step 2, routing inside IIBs is performed. It is
important to note here that, because routing problems associated
with IIBs are entirely independent, they can be processed in parallel
and in any order. This is unlike other partitioning-based parallel
routing strategies [3], where perfect independence between routing
sub-problems is never guaranteed. Here, the runtime efficiency of
intra-CLB routing in Step 2 is largely determined by the number of
available processing cores.

Because IIB inputs are fixed in Step 1 and IIB connectivity is
sparse, it is conceivable that, for some IIBs, Step 2 returns only a
partially legal solution, that is, with nets overlapping inside the IIB.
To account for this issue, at the end of Step 2, we combine routing
solutions from Step 1 and Step 2. In the last step, Step-3, overlapping
nets (in red in Fig. 5) are ripped up and incrementally rerouted all
the way to LUT and FF inputs. The incremental rerouting can also
lead to ripping up and rerouting of legal nets.

STEP 2

STEP 1

Legal and complete?

Routing until
the IIB boundaries

Combining partial solutions

Final routing solution

Incremental routing

Yes

No

II
B

II
B

II
B

II
B

II
B

II
B

SBSB

II
B

II
B

II
B

SBSB

II
B

II
BCLB CLBII
B

II
B

II
BCLBII
B

SBSB

II
B

II
B

II
B

SBSB

II
B

II
B

II
B

II
B

II
B

II
B

SBSB

II
B

II
B

II
B

SBSB

Legal Illegal

Partially ripped up

Partially ripped up if needed

Post-placement design netlist,
RRG of the target FPGA

Partial routing solutions,
IIB routing problems

STEP 3

IIB
routing

CLB

CLB

CLB

CLB

CLBCLB

CLB CLB CLB

CLB CLB CLB

CLBCLBCLB

CLB CLB CLB

CLBCLBCLB

CLB CLB CLB

IIB
routing

II
B

II
B

Fig. 5: Proposed multi-stage routing flow.

01 02 03 04 05 06 07 08 09 10 11 12
ISPD16 Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Ru

nt
im

e

Step 1 Step 2 Step 3

Fig. 6: Runtime comparison for IIB-6-2L: Multi-Stage Router vs.
Single-Stage Router. Geomean speedup is 1.55×.

B. Implementation and Results

For implementation purposes, in Step 1 of our Multi-Stage Router,
we use Full IIB, which gives a fair estimate of routing effort until
the IIB boundaries, as described in Section V. The input IIB pins
determined at the end of Step 1 serve as starting points for intra-CLB
routing in Step 2. To overcome the difficulty of adapting VPR for
routing only inside IIBs, we wrote a multi-threaded implementation
of the PathFinder algorithm in C++. With the routing resource graph
describing only the IIB topology and the maximum number of
PathFinder iterations set to 50, we perform IIB routing in Step 2;
we set the number of threads to 48, the highest supported by our
experimental setup (see Section III). Once the partially completed
routing solutions from Step 1 and Step 2 are obtained, we combine
them to incrementally route in Step 3. At the start of Step 3, we load

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:17:32 UTC from IEEE Xplore. Restrictions apply.

01 02 03 04 05 06 07 08 09 10 11 12 GM
ISPD16 Benchmarks

0%

20%

40%

60%

80%

100%
Le

ga
liz

at
io

n
Ra

te

62
.3

IIB-6-2L

(a) Legalization rate for ISPD16.

0 5 10 15 20 25 30 35 40 45 50 55 60
Number of CLB pins being driven

0%

20%

40%

60%

80%

100%

Le
ga

liz
at

io
n

Ra
te

IIB-6-2L

(b) Legalization rate vs. driven CLB pins.

0 2 4 6 8 10 12 14 16
Number of bypass pins being driven

0%

20%

40%

60%

80%

100%

Le
ga

liz
at

io
n

Ra
te

IIB-6-2L

(c) Legalization rate vs. driven bypass pins.

Fig. 7: Analysis of the IIB legalization rate in Step 2 of the Multi-Stage Router, for IIB-6-2L.

historical cost of the general interconnect from the last iteration of
Step 1 and historical cost of all IIBs routed successfully in Step 2.
In both Step 1 and Step 3, we run the enhanced VPR router with a
limit of 1,000 iterations. While routing, we do not exclude clock and
control signals.

Using the experimental setup presented in Section III, we routed
ISPD16 benchmarks and measured the runtime for (a) baseline
enhanced VTR router and (b) Multi-Stage Router. In the baseline
router setup, the RRG includes a model of a realistic IIB (as described
in Section V). In the remainder of the paper, we will refer to the
described baseline router as Single-Stage Router.

The per-benchmark results for IIB-6-2L are visualized in Fig. 6.
The overall height of each bar corresponds to the runtime of the
Multi-Stage Router normalized to the corresponding Single-Stage
Router runtime, while the dotted line corresponds to no runtime
savings (i.e., normalized runtime equal to one). Hence, the bigger
the gap between a bar and the dotted line, the better the speedup.
Analyzing the obtained results, we first find that the geomean speedup
is 1.55×, which is considerably lower than the 6× we reported in
Section V. To understand why, let us return to Fig. 6, where each
bar is composed of three parts: the ratio of the total runtime spent in
Step 1 (light blue), Step 2 (dark blue), or Step 3 (yellow). Judging
by the proportion of runtime spent in Step 3, not only that some
IIBs were not legalized in Step 2 (which was anticipated), but the
effort to incrementally route the combined solutions from Step 1
and Step 2 is far from negligible. Another interesting observation
we can draw from Fig. 6 is that multi-threaded parallel IIB routing
in Step 2 is completed in a comparably much shorter time (in 9.5
seconds, on average) than Step 1 or Step 3; this result confirms our
reasoning in Section I-C that the absence of A* inside IIB is not a
major concern when perceived in isolation. In the next section, we
analyze the reasons behind the high runtime in Step 3 in further detail
and propose ways to reduce it.

VII. PERFORMANCE ANALYSIS AND ENHANCEMENTS

A. What Limits the Exploitable Speedup?

If the assumption that intra-CLB routing can be performed in-
dependently from routing in the general interconnect always held,
all IIBs would be successfully legalized during Step 2. However, as
anticipated in Section I, due to the sparsity of the IIB architecture,
congestion in some IIBs will not be resolvable without altering the
routing through the general interconnect that was previously fixed
during Step 1. The actual legalization rates which we measured on
the ISPD16 benchmarks are plotted in Fig. 7a. At least those nets
which still have overlaps in some IIBs have to be rerouted in Step 3,
so that the final routing produced by the proposed algorithm is legal.

01 02 03 04 05 06 07 08 09 10 11 12 GM
ISPD16 Benchmarks

0%

20%

40%

60%

80%

100%

Le
ga

liz
at

io
n

Ra
te 77

.9
93

.5 98
.8IIB-6-2L, LUT-1 IIB-8-2L IIB-8-2L, LUT-1

Fig. 8: Legalization rate comparison.

As shown in Fig. 6, low legalization rates lead to Step 3 taking
a significant fraction of the total runtime. It is hence imperative to
increase the legalization rate, ideally bringing it up to (very close to)
100%. To achieve this, we first need to understand what produces
difficult intra-CLB problems. In Fig. 7b, we plot the legalization rate
as a function of the total number of target pins in the CLB that are
used (i.e., all used LUT inputs and all used direct-FF-access pins,
labeled as I and X in Fig. 3). We can see that the legalization rate
starts dropping significantly when more than 25 out of 64 target pins
in the CLB are used. At first thought, it may seem that already very
low pin utilization leads to very difficult problems. However, not all
target pins cause the same amount of difficulties. Namely, LUT inputs
are permutable, whereas if a signal has to reach a particular I or X
input, this input cannot be exchanged for an alternative. Given that
these direct-FF-access pins are driven by the bypass multiplexers,
which are the only ones whose output is returned to the first level
of the IIB (see Fig. 2), using too many of them, in turn, severely
constrains the LUT-input routing problem as well. We can clearly
see that from Fig. 7c, which plots the legalization rate as a function
of the number of bypass pins that are used in the CLB: once half of
these pins are used, the legalization rate essentially drops to zero.

B. Route-Through LUTs

The first method of reducing the pressure on bypass multiplexers
we employ is purely algorithmic: whenever an FF is driven by
a direct-access pin, but can instead be driven through an unused
LUT, we resort to the second option. This way, the number of
alternatives the router has to route to the FF increases thanks to
the permutability of the LUT’s inputs. We note that LUT route-
throughs, which configure an unused LUT into a routing multiplexer
where appropriate, are already used by Quartus [24]. Since we target
applications that are not timing critical but where runtime—and hence

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:17:32 UTC from IEEE Xplore. Restrictions apply.

the high legalization rate in Step 2—is of great concern, we apply a
route-through wherever intra-CLB placement creates an opportunity
for it. After employing this optimization, which we call LUT-1, we
observed a notable improvement in the legalization rate: the geometric
mean increased from 62.3% (Fig. 7a) to 77.9% (Fig. 8). As a result,
the geomean of the router runtime improved by 1.52×, leading to a
total improvement of 2.36× compared to the single-stage router.

C. Enhanced IIB Architecture

The second method that we use to reduce the pressure on bypass
multiplexers—but also the entire IIB structure in general—relies on
a very simple architectural enhancement: we increase the size of all
IIB multiplexers from 6:1 to 8:1. The two added multiplexer inputs
effectively increase the number of available paths for routing the nets
and help in alleviating congestion. Consequently, during each rip-
up and reroute, there is an increase in the number of heap pushes.
However, the total number of rip-ups required to resolve congestion
decreases significantly, resulting in an overall reduction in total heap
pushes and runtime.

To estimate the impact of this IIB modification on silicon area,
we measure the increase in Programmable Interconnect Points
(PIPs) [25] required to implement the enhanced architectures. A PIP
structure fundamentally consists of a transmission gate controlled by
a configuration memory cell. Adding two PIPs to each multiplexer
that previously had six, without altering the multiplexer count, leads
to a 33% increase in IIB area (measured approximately by the total
number of PIPs). This increase may seem very significant; however,
it should be noted that the IIB consumes about 30% of the logic tile
area of a typical FPGA [12], while logic tiles, in turn, consume about
30% of the entire die area [26]. This means that the proposed increase
amounts to merely 3% of the total die area, which is an estimate based
on PIP counting that could likely be substantially reduced through
the use of two-level multiplexers [26] and other layout optimizations.

Of course, this increase also inevitably leads to delay deterioration
due to wire elongation and increased capacitive load. However, since
we target applications that are not timing-critical, we do not consider
this to be of major importance. In the case of other applications, the
delay penalty could be mitigated through further layout optimizations
and by adopting a more efficient architecture that specifically targets
increasing the flexibility of bypass pins. That, however, goes beyond
the scope of the present work.

With IIB-8-2L and LUT-1, the IIB legalization rate reaches 98.8%
(Fig. 8). If we compare the runtime of the Multi-Stage Router with
IIB-8-2L and LUT-1 with the runtime of the Multi-Stage router with
IIB-6-2L and no enhancements, we obtain the results shown in Fig 9.
The proportion of runtime spent in Step 3 is clearly reduced, which
improves the geomean speedup further by 3.1×.

Finally, Fig. 10 compares the normalized runtime of the Multi-
Stage Router with IIB-8-2L and LUT-1 to that of the Single-Stage
Router with IIB-6-2L. Compared to Fig. 6, the share of the runtime
of Step 3 is greatly reduced. As a result, our proposed router achieves
4.94× faster routing.

D. Detailed Results

Table II summarizes the speedup and normalized WL for the
following four variants of experiments with the Multi-Stage Router:
IIB-6-2L, IIB-6-2L with LUT-1, IIB-8-2L, and IIB-8-2L with LUT-1,
compared to the absolute runtime and wirelength (WL) obtained with
Single-Stage Router with IIB-6-2L.

Before discussing the results in Table II, let us briefly comment
on ISPD benchmark 12. This design occupies 67,115 out of 67,200

01 02 03 04 05 06 07 08 09 10 11 12
ISPD16 Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Ru

nt
im

e

Step 1 Step 2 Step 3

Fig. 9: Runtime comparison: Multi-Stage with IIB-8-2L and LUT-1
vs. Multi-Stage with IIB-6-2L. Geomean speedup is 3.1×.

01 02 03 04 05 06 07 08 09 10 11 12
ISPD16 Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Ru

nt
im

e

Step 1 Step 2 Step 3

Fig. 10: Runtime comparison: Multi-Stage with IIB-8-2L and LUT-1
vs. Single-Stage with IIB-6-2L. Geomean speedup is 4.94×.

available CLBs, and it is the benchmark with the highest utilization
of FFs (602K FFs versus ∼260K FFs, on average, by the remaining
11 benchmarks). In addition, the Rent exponent of 0.6 makes it
undoubtedly one of the most difficult to route. In our experiments
with IIB-6-2L (both with Single- and Multi-Stage Router), after ∼400
routing iterations, the number of congested nodes reduces to only a
few (1–3). Incidentally, they are located at the edge of the FPGA,
where the routability is inherently limited. As the congestion on these
nodes is not eliminated in the subsequent routing iterations, we do not
report the runtime or the WL for these experimental runs. However,
once the IIB-6-2L is replaced with IIB-8-2L, the circuit successfully
routes. The runtime (in minutes) and the total wirelength are reported
in Table III, for reference. The example of benchmark 12 further
confirms that the added cost of implementing IIB-8-2L quickly pays
off: IIB-8-2L not only helps faster routing overall but also helps
alleviate the congestion in the general interconnect.

Returning to data in Table II, we observe that the WL improves
with every new and enhanced variant of the router. This is due to
two factors: first, the routing in Step 1 of the Multi-Stage Router is
not burdened by the intra-CLB congestion, which causes upstream
rip-ups and detours in the general interconnect; second, less work is
performed in Step 3, resulting in WL closer to the one obtained after
Step 1.

VIII. RELATED WORK

Moctar et al. also observed that routing inside sparse IIBs takes
a significant amount of time and proposed to perform IIB routing
separately [16]. Contrary to our approach, which is to route the IIBs
once a legal routing in the general interconnect has been completed,
Moctar et al. suggested routing each IIB before the general routing
even starts, thus fixing the IIB entry pins for the signals in the

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:17:32 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Speedup and wirelength (WL) for different configurations of our Multi-Stage Router with respect to the baseline Single-Stage
Router (Enhanced VTR, IIB-6-2L).

Benchmark
Single-Stage Router Multi-Stage Router

IIB-6-2L IIB-6-2L IIB-6-2L, LUT-1 IIB-8-2L IIB-8-2L, LUT-1
Runtime
(minutes)

WL Speedup
WL

(norm.)
Speedup

WL
(norm.)

Speedup
WL

(norm.)
Speedup

WL
(norm.)

01 2.29 601,476 1.78 0.91 3.12 0.84 4.29 0.81 4.64 0.81
02 2.85 1,017,353 2.26 0.91 2.97 0.89 3.50 0.88 3.42 0.88
03 12.82 4,757,537 1.89 0.95 2.30 0.94 2.78 0.93 2.71 0.93
04 28.09 7,772,544 1.75 0.97 2.18 0.96 3.43 0.96 3.36 0.96
05 142.55 13,006,369 1.98 0.99 2.81 0.98 4.11 0.98 4.05 0.98
06 50.74 8,817,464 1.44 0.97 2.28 0.94 4.33 0.91 5.22 0.91
07 384.13 14,034,613 1.04 0.98 1.59 0.96 4.95 0.94 7.50 0.94
08 35.46 11,433,301 2.20 0.96 2.69 0.96 3.27 0.95 3.56 0.95
09 278.95 16,930,863 1.31 0.99 1.76 0.97 4.25 0.95 4.61 0.94
10 339.90 11,935,708 1.00 0.99 3.18 0.88 5.91 0.84 13.68 0.82
11 387.78 14,617,538 1.11 0.98 1.77 0.96 5.81 0.92 8.27 0.92

Geomean 52.60 6,704,329 1.55 0.96 2.36 0.93 4.13 0.91 4.94 0.91

TABLE III: Routing runtime and wirelength (WL) for benchmark 12.

Benchmark IIB-8-2L IIB-8-2L, LUT-1
Runtime
(minutes)

WL
Runtime
(minutes)

WL

12 42.60 8,696,445 25.04 8,546,902

second step [16]. This approach is very effective at reducing
runtime when architectures have generous connectivity compared to
the requirements of the circuits, which was the case with those used
by Moctar et al [16]. For historical reasons of the inability of VPR
to route beyond IIB pins, as this was a trivial and thus neglected
problem when IIBs were fully connected, around the same time as
Moctar et al., Luu et al. developed an almost identical approach and
integrated it in VTR-7 [15].

Unfortunately, fixing all IIB pins a priori, without any information
about the congestion in the general interconnect, creates very difficult
inter-cluster routing problems that drastically increase runtime and
sometimes even make it impossible to resolve congestion in realistic
architectures. To confirm the above reasoning with VPR, we added
a fully connected IIB and connected each input of the IIB to four
channel wires. Once instructed to route, VPR first fixes the choice
of the pins at the IIB boundaries (equivalent to routing inside IIBs
first, but at no runtime cost), and only then routes in the general
interconnect. As expected, the router failed to resolve congestion for
some benchmarks (7, 9, and 12). Taking the runtime obtained for
the remaining benchmarks and comparing it to the runtime of the
Single-Stage router with IIB-6-2L (second column in Table II), we
observed that fixing IIB pins a priori results in 1.8× longer routing,
on average.

Recently, Wang et al. also identified intra-cluster routing as a major
bottleneck, which they tried to resolve by splitting the routing process
over multiple, albeit less clearly separated stages [27]. Although the
speedups that the authors report are more significant than what we
measured in this work, a note should be taken that the baseline with
which they make their comparison is vastly inferior to the one that
we use. With their baseline setup, four ISPD16 benchmark circuits
are not routable in 24h, while the remaining seven take a total of
2168 minutes to route. As a comparison, in our baseline, routing
these circuits takes 472 minutes in total. We believe that it is much
easier to improve a baseline of so significantly lower quality and that

the baseline is, in fact, the main cause for a higher relative runtime
reduction than ours.

Considering the final runtime numbers, our Multi-Stage Router
with IIB-8-2L and LUT-1 is 4.3× faster in completing the routing of
all ISPD16 circuits than that proposed by Wang et al. With IIB-6-2L
and LUT-1, the runtimes of our Multi-Stage Router are comparable
to those reported by Wang et al. Although, due to likely different
FPGA architectures (the IIB topology not being described in detail
in [27]) and the fact that, unlike us, Wang et al. do not route clock
and control signals (which contribute to the congestion in the general
interconnect), it is not possible to compare these numbers directly.
We believe the similarity of the results of Wang et al. and ours (with
IIB-6-2L and LUT-1) clearly demonstrates that many of the complex
algorithmic techniques proposed by Wang et al. are not really needed
to resolve the runtime bottleneck. This should not come as too big
of a surprise, though. In Section V, we observed that the most
significant runtime savings could be obtained from avoiding the need
to resolve congestion in target IIBs each time a signal changes its path
through the general interconnect; once this large source of required
work is removed, additional improvements of the general interconnect
routing runtime—for instance using the global/detailed routing split
that Wang et al. proposed—become less important. Nevertheless, we
note that in our partitioning approach, any such technique is entirely
orthogonal and can be used to achieve further speedups.

IX. CONCLUSIONS

We identified a routing runtime bottleneck within the CLB when
routing through sparse input multiplexing structures (called the IIB)
representative of the current commercial state-of-the-art FPGAs. We
propose a Multi-Stage Router where we decouple the routing to
the inputs of the IIB from the routing inside the IIBs (to reach
actual CLB pins). The decoupling leads to independent routing
problems at the CLB level, unlocking significant parallelism. A router
runtime speedup of 2.36× is achieved over an enhanced state-of-
the-art Single-Stage Router. We propose enhancements to the IIB
architecture in light of the Multi-Stage Router algorithm to improve
the IIB legalization rates, achieving speedups of 4.94× without loss
of quality. We believe the ideas and results presented here open
up new avenues for architecture-aware design of runtime-efficient
routing algorithms for FPGAs.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:17:32 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-P.
Legault, E. Sha, A. G. Graham, J. Wu, M. J. Walker, H. Zeng, P. Patros,
J. Luu, K. B. Kent, and V. Betz, “VTR 8: High-performance CAD
and customizable FPGA architecture modelling,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 13, no. 2, pp. 1–60, May
2020.

[2] E. Vansteenkiste, A. Kaviani, and H. Fraisse, “Analyzing the divide
between FPGA academic and commercial results,” in Proc. of the
2015 International Conference on Field Programmable Technology,
Queenstown, New Zealand, Dec. 2015, pp. 96–103.

[3] M. Stojilović, “Parallel FPGA routing: Survey and challenges,” in Proc.
of the 27th International Conference on Field Programmable Logic and
Applications, Ghent, Belgium, Sep. 2017, pp. 1–8.

[4] M. An, J. G. Steffan, and V. Betz, “Speeding up FPGA placement:
Parallel algorithms and methods,” in Proc. of 2014 IEEE 22nd Annual
International Symposium on Field-Programmable Custom Computing
Machines, Boston, MA, USA, May 2014, pp. 178–85.

[5] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based
performance-driven router for FPGAs,” in Proc. of the 3th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Mon-
terey, CA, Feb. 1995, pp. 111–17.

[6] S. Kaptanoglu, “Pathfinder: A negotiation-based performance-driven
router for FPGAs,” FPGA and Reconfigurable Computing Hall-of-Fame
Endorsement. Available: http://tcfpga.org/fpga20/p32.pdf, 2012.

[7] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Norwell, MA, USA: Kluwer Academic publishers,
1999.

[8] S. Chandrakar, D. Gaitonde, and T. Bauer, “Enhancements in UltraScale
CLB architecture,” in Proc. of the 23rd ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Monterey, CA, USA,
Feb. 2015, pp. 108–16.

[9] A. Boutros and V. Betz, “FPGA architecture: Principles and progres-
sion,” IEEE Circuits and Systems Magazine, vol. 21, no. 2, pp. 4–29,
2021.

[10] S. Shrivastava, S. Nikolić, C. Ravishankar, D. Gaitonde, and M. Sto-
jilović, “IIBLAST: Speeding up commercial FPGA routing by decou-
pling and mitigating the intra-CLB bottleneck—Artifacts,” Available:
https://doi.org/10.5281/zenodo.8267376, 2023.

[11] “UltraScale architecture configurable logic block,” https://docs.xilinx.
com/v/u/en-US/ug574-ultrascale-clb, AMD, accessed: 2023-5-19.

[12] D. Lewis, D. Cashman, M. Chan, J. Chromczak, G. Lai, A. Lee,
T. Vanderhoek, and H. Yu, “Architectural enhancements in Stratix V™,”
in Proc. of the 21st ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Monterey, California, USA, Feb. 2013, pp.
147–56.

[13] G. Lemieux and D. A. Lewis, Design of Interconnection Networks for
Programmable Logic. New York, NY: Springer, 2004.

[14] L. McMurchie and C. Ebeling, “Chapter 17 - PathFinder: A negotiation-
based performance-driven router for FPGAs,” in Reconfigurable Com-
puting, ser. Systems on Silicon, S. Hauck and A. Dehon, Eds. Burling-
ton, MA, USA: Morgan Kaufmann, 2008, pp. 365–81.

[15] J. Luu, “Architecture-aware packing and CAD infrastructure for field-
programmable gate arrays,” PhD Thesis, University of Toronto, 2014.

[16] Y. O. M. Moctar, G. G. F. Lemieux, and P. Brisk, “Routing algorithms
for FPGAs with sparse intra-cluster routing crossbars,” in Proc. of
the 22nd International Conference on Field Programmable Logic and
Applications, Oslo, Norvey, Aug. 2012, pp. 91–8.

[17] K. E. Murray, M. A. Elgammal, V. Betz, T. Ansell, K. Rothman, and
A. Comodi, “SymbiFlow and VPR: An open-source design flow for
commercial and novel FPGAs,” IEEE Micro, vol. 40, no. 4, pp. 49–57,
Jul. 2020.

[18] International Symposium on Physical Design (ISPD), “Routability-
driven FPGA placement contest,” https://www.ispd.cc/contests/16/
ispd2016 contest.html, 2016, retrieved Aug. 2022.

[19] W. Li, S. Dhar, and D. Z. Pan, “Placements for ISPD16 benchmarks,”
http://wuxili.net/project/utplacef/, 2016, retrieved Sep. 2022.

[20] “Hardware-assisted verification market - by platform (hardware
emulation, FPGA prototyping), by application (automotive, con-
sumer electronics, industrial, aerospace & defense, medical, tele-
com) & global forecast, 2023-2032,” https://www.gminsights.com/
industry-analysis/hardware-assisted-verification-market, Global Market
Insights, accessed: 2023-5-20.

[21] W. Li, S. Dhar, and D. Z. Pan, “UTPlaceF: A routability-driven FPGA
placer with physical and congestion aware packing,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 4, pp. 869–82, Apr. 2018.

[22] Y. Zha and J. Li, “Revisiting pathfinder routing algorithm,” in Proc. of
the 30th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, Seaside, CA, USA, Feb. 2022, pp. 24–34.

[23] K. E. Murray, S. Zhong, and V. Betz, “Air: A fast but lazy timing-
driven FPGA router,” in Proc. of the 25th Asia and South Pacific Design
Automation Conference, Beijing, China, Jan. 2020, pp. 338–44.

[24] I. Corporation, “Intel® Quartus® Prime Pro Edition Help version 21.4,”
2023, retrieved May 2023.

[25] C. Lavin and A. Kaviani, “RapidWright: Enabling custom crafted
implementations on FPGAs,” in Proc. of 2018 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing
Machines, Boulder, CO, USA, May 2018, pp. 133–40.

[26] D. Lewis and J. Chromczak, “Process technology implications for
FPGAs,” in 2012 International Electron Devices Meeting, San Francisco,
CA, USA, Dec. 2012, pp. 25.2.1–25.2.4.

[27] J. Wang, J. Mai, Z. Di, and Y. Lin, “A robust FPGA router with
concurrent intra-CLB rerouting,” in Proc. of the 28th Asia and South
Pacific Design Automation Conference, Tokyo, Japan, Jan. 2023, pp.
529–34.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:17:32 UTC from IEEE Xplore. Restrictions apply.

