
FPGA Accelerator for Stereo Vision using
Semi-Global Matching through Dependency

Relaxation

Shashwat Shrivastava∗, Ziaul Choudhury∗, Shashwat Khandelwal∗ and Suresh Purini†
Computer Systems Group, International Institute of Information Technology

Hyderabad, India

Email: ∗{shashwat.shrivastava, ziaul.c, shashwat.khandelwal}@research.iiit.ac.in †suresh.purini@iiit.ac.in

Abstract—In this paper, we propose a fully parallel and
pipelined architecture for stereo vision on FPGAs using Semi-
Global Matching with Census Transform being used underneath.
Further, we extend the above streaming architecture so that
multiple pixels can be processed in a data parallel fashion.
We expose this data parallelism through dependency relaxation.
This establishes a trade-off between accuracy and throughput of
the hardware. We tested the proposed architecture on Virtex-7
FPGA using KITTI 2012 and KITTI 2015 datasets. On images of
resolution 1280x960, with 64 disparity levels, we are able to run
our hardware design at 100 MHz. At this frequency, our design is
able to process 322 frames per second which is 1.6 times faster
than the state-of-the-art SGM implementation on FPGA. Our
system can be scaled to a higher resolution image.

Index Terms—Stereo Vision, FPGAs, Semi-Global Matching

I. INTRODUCTION

Stereo vision involves recovering the 3D structure of a scene

from a pair of 2D images of the same scene, each acquired

using a camera from a different viewpoint in space, at the

same time. This requires finding a corresponding pixel from

the left image for every pixel in the right image. We simplify

this problem by rectifying the stereo pair such that the two

corresponding pixels lie on the same scan line. The distance

between a pixel in the right image and its corresponding pixel

in the left image is called its disparity. If we know the focal

length of the stereo cameras, then we can compute the depth

of a 3D point which got projected onto the corresponding

pixel pair. Thus the goal is to construct a disparity map

D(x, y) ∈ {0, · · · , dmax − 1}, for some constant dmax, from

a rectified stereo pair of images. This has applications in the

fields such as robotics and driver-less cars which require an

accurate estimation of the surrounding 3D geometry.

Stereo correspondence algorithms can be broadly classified

into local, global and semi-global methods [1], [2]. In local

methods, the disparity of pixels in a right image is computed

by matching its neighborhood window with that of others on

the same scan line from the left image using distance metrics

such as sum of squared intensity differences (SSD), sum of

absolute intensity differences (SAD) and census transform [3].

In practice, disparity maps computed using local methods

end up containing streaky artifacts. Global methods attempt

to construct smooth disparity maps by introducing suitable

penalties for discontinuities. This is modeled by defining an

energy function over the disparity map as follows.

E(D) = Edata(D) + Esmooth(D)

The objective is to find a disparity map which minimized

the above objective function. The Edata function captures

the disparity map as computed by local methods and the

Esmooth function captures the smoothness constraints between

the neighborhood pixels. Global methods are NP-hard and

there are no known computationally efficient algorithms for

the same.

Semi-Global Matching (SGM) methods [2] attempt to ap-

proximate the global methods by expressing the 2D smooth-

ness constraints as an aggregation of multiple 1D constraints

representing different directions. This makes them computa-

tionally tractable while giving a high-quality disparity map. In

this paper, we propose a novel parallel pipelined architecture

for high throughput stereo vision which is based on the SGM

algorithm proposed by Hirschmuller [2]. This algorithm which

is described in Section I-A forms the basis for the proposed

hardware architecture presented in Section II. The following

are the main contributions of our work.

1) We propose a novel parallel pipelined architecture for

disparity map computation in a streaming fashion. The

architecture is a realization of Semi-Global Matching

technique with Census Transform being used as a local

method.

2) We extend the aforementioned architecture so that mul-

tiple pixels within a same row can be processed in

parallel. We call this data parallelism as pixel-level

parallelism. We establish a trade-off between accuracy of

the disparity map computed and achievable throughput

through pixel-level parallelism.

A. Modified SGM using Census Transform

SGM associates for a pixel p, a matching cost S(p, d), if it

is assigned a disparity value d. The disparity of a pixel p is

then defined as follows.

D(p) = argmin
0≤d≤dmax

S(p, d) (1)

304

2020 30th International Conference on Field-Programmable Logic and Applications (FPL)

978-1-7281-9902-3/20/$31.00 ©2020 IEEE
DOI 10.1109/FPL50879.2020.00057

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:13:47 UTC from IEEE Xplore. Restrictions apply.

lr

tb nld

rlpo q

ld

Fig. 1: All the 1D path directions used in disparity map

computation in our work.

The matching cost S(p, d) is obtained by aggregating the

matching cost from multiple 1D directions. Let Lr(p, d)
denotes the matching cost of a pixel p in the direction r if

it is assigned a disparity d. Then

S(p, d) =
∑
r

Lr(p, d) (2)

The matching cost Lr(p, d) is in turn defined using the

following recursive equation.

Lr (p, d) = CT (p, d) + min

⎧⎨
⎩

Lr (p− r, d)
Lr (p− r, d± 1) + P1
min
k

Lr (p− r, k) + P2

⎫⎬
⎭

−min
k

Lr (p− r, k)

(3)

The function CT is computed by applying a census transform

on the neighborhood windows at the pixels p = (x, y)
and p′ = (x + d, y), and then taking a hamming distance

between the transformed windows. The census transform of

a window is obtained by comparing a pixel with the central

pixel and the corresponding cell in the output window is set

to 1 if its intensity is greater otherwise to 0. While we used

neighborhood windows of dimensions 7x7, Figure 3 illustrates

the computation of CT function between two 3x3 windows.

P1 and P2 are the penalty terms which account for disparity

discontinuity along the 1D path. The accuracy of the SGM

method is proportional to the number of paths used to estimate

disparity. Y. Li et al. [4] used five paths in place of four paths

and showed that the accuracy increased by 20%. In this paper,

we have also used 5 directions r ∈ {lr, ld, tb, nld, rl} which

are depicted in Figure 1. Note that in Equation (3), p − r
denotes the previous pixel in the direction r. For example, if

p = (x, y), then p − r in lr direction denotes (x − 1, y) and

in ld direction it would be (x− 1, y − 1).

II. PROPOSED ARCHITECTURE

A. Overall Design

We propose a heterogeneous CPU+FPGA stereo vision

system for disparity map computation using Semi-Global

Matching. The host CPU streams the stereo pair of images to

the FPGA through the PCIe bus. The architecture of the accel-

erator itself is oblivious to whether the streaming is happening

over PCIe bus or directly from a stereo camera through some

other protocol. Figure 2 shows the overall architecture of our

proposed stereo vision accelerator. For notational simplicity,

let S(p) denote the vector 〈S(p, 0), · · · , S(p, (dmax − 1))〉
(refer Equation (2)). Analogous definitions hold for Lr(p) and

CT (p) (refer Equation (3)). Then for a given pixel, the CT

module in Figure 2 is computing the CT (p) vector which in-

volves computing the census transform and hamming distance

for multiple disparity levels [0, dmax−1]. Each module SGMr

computes the vector Lr(p), for r ∈ {lr, ld, tb, nld, rl}. We call

them as Semi-Global Matching (SGM) units. The Aggregator

unit computes the S(p) vector.

The data flow across these units is maintained through an

efficient memory organization, wherein individual modules

can read and write to the memory with minimum latency.

Using double buffering and overlapping compute with com-

munication, we ensure that our hardware maintains a high

compute to communication ratio, thereby preventing any un-

necessary stalls. Finally, we resort to a novel parallelism

scheme within the SGM units, leading to increased throughput

of the hardware. The above description of the hardware defines

one Processing Unit (PU). If there are sufficient hardware

resources on the FPGA, we can instantiate more than one PU,

wherein each PU can compute the disparity of different pixel,

thus allowing efficient scale-out. Overall, we achieve pipelined

parallelism within a PU and pixel-level parallelism by using

multiple such PUs.

B. CT Function Computation

The streamed input left and right images are stored in their

respective line buffers. Since we are using 7x7 windows for

computing the census transform, the line buffer sizes are set so

that they can hold 7 image rows at a time. This is a parameter

in our design and other window sizes are also possible. The

CT module computes the CT (p) vector for every pixel p
in the right image in a row-major fashion. Using pipelined

parallelism across pixels and disparity level parallelism within

the computation of a pixel disparity, the hardware maintains a

steady throughput of one CT (p) computation per clock cycle.

The CT module reads the 7x7 windows from the line buffers

of the left and right images, and computes their census trans-

form. The census transform of a 7x7 window is a 48-bit vector

(excluding the center pixel). The bit vectors from the right

image are accumulated in a FIFO whose size is equal to the

number of disparity levels (dmax = 64). The bit vectors from

the left image are stored in a register of width 64× 48 which

is equal to 3072. Every time a 48 bit vector comes out from

the left image, it will be right shifted into the corresponding

register. Once the right FIFO is full, then that means all

the census transform vectors required for the computation of

the disparity of the first pixel in FIFO are available in the

register (refer Figure 3). Then the Hamming Distance module

deques the first element from the right FIFO and reads the

register to compute all the 64 elements of the CT (p) vector

in parallel. Computing each element of the vector involves a

48-bit XOR operation followed by counting the number of 1s.

This counting operation for hamming distance computation is

performed by a tree structured circuit.

305

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:13:47 UTC from IEEE Xplore. Restrictions apply.

FIFO

LIFO
Left Image(IL)

Right Image (IR)

Disparity

Initial Cost

CT(p)

LIFO Z-L

Lr(p)

Z-L

8

8

Line Buffer

Line Buffer

Lr(p)

Lr(p)

Lr(p-r)

Lr(p-r)

Lr(p-r)

Lr(p-r)

Lr(p)

Lr(p)

CT(L-p)

7 x (6+n)
wiindow

64*8*n
bits

64*8*n
bits

64*8*n
bits

64*8*n bits

64*8*n bits

64*10*n
bits

64*8*n bits

64*8*n
bits

BRAM Compute

8*n bits

8*n bits SGMlr

SGMtb

SGMnld

Cost
Aggregation

16*n bits

SGMrl

PU=1

PU=2
PU=n

PU=1

PU=2

PU=n

PU=1
PU=2

PU=n

PU=1

PU=2
PU=n

PU=1

PU=2
PU=n

PU=1

PU=2

PU=n

Post Processing

7 x (6+n)
wiindow

64*8*n
bits

64*8*n
bits

HD
HD

HD

PU=n

PU=1

PU=2

CT

64*8*n bits

Compute

SGMld

PU=1

PU=2
PU=n

Lr(p-r)
64*8*n bits

S'(p) S'(p)

Fig. 2: Overall architecture of the proposed stereo vision accelerator with n PUs for an image with width L.

21 12 120

66 56 99

10 30 110

35 79 12

55 50 142

144 22 189

0 0 1

1 1

0 0 1

0 1 0

1 1

1 0 1

00111001

01011101

CT

CT

IR

IL

FIFO

3
1

2 1
2 3 62 63 644 >>

4
1 2 3 62 63 64

3 2 1
4

Previous state
(64 Regs to store bit

vector)

Current state

Text

01011101

Bit vector

Bit vector

8

8

8 bits

Initial Cost
Vector
CT(p)Hamming

Distance

8*64
bits

Fig. 3: Architecture of CT PU when PU = 1.

C. Architecture of SGM Units

Semi-Global Matching optimizes the path cost along each

direction independent of other directions. We can infer this

from Equation 3 wherein Lr(p, d) is defined without reference

to any other direction r′ �= r. Therefore we have five inde-

pendent SGM units SGMr for r ∈ {lr, ld, tb, nld, rl}, each

computing the respective optimized path cost vector Lr(p)
(refer Figure 2). Recall that Lr(p) has dmax dimensions each

corresponding to a disparity level.

Each of the SGM units take the CT (p) output vector from

the CT module as input. The SGM units corresponding to the

four directions lr, ld, tb and nld (refer 2) are computed in a

streaming fashion as the scanline is read from the line buffer

in left to right fashion. We call this as the forward pass. The

output of SGMld, SGMtb and SGMnld units will be stored in

the BRAM as they are required while computing the disparity

of pixels in the next row. Further, these vectors are summed

up to yield partial aggregate vector S′(p) as follows.

S′(p) =
∑

r∈{lr,ld,tb,nld}
Lr(p)

The partial aggregate vector S′(p) is stored in the BRAM

for later reference. The SGMrl unit computes the optimized

path in the rl direction in a backward pass after the current

row is completely read. During the time backward pass is

happening, simultaneously line buffer filling and forward pass

of the next row also begins. Thus the forward pass of the next

row and backward pass of the current row occurs in a perfect

pipelined fashion with no pipeline stalls whatsoever. Finally,

the Cost Aggregator module adds Lrl(p) vector to the partial

aggregate to generate the full aggregate vector S(p).

S(p) = S′(p) + Lrl(p)

Note from the Figure 2 the partial aggregate vectors computed

in the forward pass are stored in Last-In-First-Out (LIFO)

data structure to match the vectors generated in the backward

pass for complete aggregation. Further, the CT (p) vectors

generated by the CT module, for each row, are stored in

a LIFO structure so that the SGMrl unit can pop them in

the appropriate order while computing Lrl(p) vectors. The

Cost Aggregator module computed the disparity by finding the

index of the minimum value in S(p) (refer Equation (1)) using

a tree structure. Note that there is a data dependency from

Lr(p−r) to Lr(p). The SGMld, SGMtb and SGMnld units use

BRAM to store the Lr(·) vectors generated while processing

the current row so that they can be consumed while processing

the next row. This necessitates the usage of a buffer of size

equal to row width wherein each element can hold a single

Lr(·) vector completely. All the FIFO and LIFO structures in

Figure 2 are realized using BRAM blocks on the FPGA.

D. Dependency Relaxation

The SGMlr and SGMrl units handle the dependency from

Lr(p − r) to Lr(p) by forwarding their outputs as feed-

back to themselves through pipelined registers. That means

computation of Lr(p) vector for a pixel p(x, y) requires the

Lr(p
′) vector of the pixel p′(x− 1, y). Each SGM unit (refer

Figure 4a) is realized as a 3 stage pipelined structure and

uses a tree structure to compute the minimum of Lr(p− r, k)
and calculates Equation 3. So by the time pixel p(x, y)
enters the SGMlr pipeline, the Lr(p

′) vector of its predecessor

p′(x−1, y) is not yet available. This will result in stalling the

pipeline. We resolve this pipeline stall problem by relaxing

the dependency constraint wherein Lr(p) vector is computed

by using the Lr(p
′′) vector of the pixel p′′(x − 4, y). For

example, Figure 4a shows that the Lr(·) vector of pixel 7 is

computed using the Lr(·) vector of pixel 3 as against that of

pixel 6. In the experimental results section, we show that this

dependency relaxation does not adversely affect the accuracy

306

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:13:47 UTC from IEEE Xplore. Restrictions apply.

i

S1 S2 S3

SGM

6 5 4

39
8

7

3

Lr(p-r)

Lr(p)

CT(p)

8 9 102 3 4 5 6 7

Pixel Relaxation of 4

(a)

2 3 4 5 6 7 8 9 10 11 12 13

Pixel Relaxation of 8

S1 S2 S3

SGM

9 7 5

3

11

3

Lr(p-r)

Lr(p)

CT(p)

S1 S2 S3

SGM

10 8 6

4

12

4

Lr(p-r)

Lr(p)

CT(p)

i+1 i
14 13

12 11

12 11

12
11

(b)

Fig. 4: Pixel-level parallelism for PU=1 and PU=2

of the disparity computation. Analogous discussion holds for

rl direction.

E. Post Processing Unit

We apply a simple 9x9 median filter on the output disparity

map image in a streaming fashion to get rid of the outliers.

F. Pixel-level Parallelism through Dependency Relaxation

The architecture described so far illustrates how pipelined

parallelism is being used to compute the pixel disparities

in a streaming fashion. In order to increase the throughput

further, we can process multiple pixels in parallel. We cannot

process two pixels p(x, y) and p′(x, y + 1) in parallel due

to dependency in computing path costs in the ld, tb and

nld directions. However, it is possible for us to process the

pixels p(x, y) and p(x + 1, y) in parallel by relaxing the

dependency constraints in the horizontal directions lr and rl,
as in Section II-D.

In order to process two pixels p(x, y) and p′(x, y) in

parallel, we instantiate two PUs, PU0 and PU1 along with

a pixel distribution logic. Each PU has its own CT function

computation unit, SGM units, and Cost Aggregation unit.

Figure 2 depicts this by replicating the constituent units in

a PU appropriately. The pixel distribution logic, supplies all

the odd pixels in a row to PU0 and even pixels to PU1. This

is illustrated in the Figure 4b. The SGMld, SGMtb and SGMnld

units corresponding to vertical direction will have no problem

in maintaining a steady-state pipeline throughput. However,

in the horizontal directions lr and rl, the required Lr(p− r)
vector may not be readily available for a PU while computing

a Lr(p) vector. For example, in Figure 4b, a processing unit

computing Lr(·) vector for pixel 11 does not have access to

Lr(·) vector of even the pixel 7. However, the Lr(·) vector

of pixel 3 can be used as an approximation. This we call as

dependency constraint relaxation. In general, when using two

PUs, while computing Lr(p) vector of a pixel p(x, y), we use

the Lr(p
′) vector of the pixel p′(x− 8, y). If there are k PUs,

then we use the pixel p′(x−4k, y) to compute the Lr(p) vector.

Thus we establish a trade-off between throughput and accuracy

in this work. We analyze this trade-off through experimental

results in Section III.

III. EXPERIMENTAL RESULTS

We synthesized our accelerator on a Virtex-7 690t FPGA

connected to an Intel Core-i5 CPU running at 3.0 GHz. The

FPGA is connected to the CPU host through a 3.5 Gbps PCIe-

8x link. We compare the speed and accuracy of our accelerator

running at 100 MHz with existing hardware implementations.

Table I compares the performance of the proposed archi-

tecture against other competitive approaches proposed in the

literature. The metrics considered for throughput are Frames

per Second (FPS) and Million Disparity Estimates per second

(MDE/s). The metric considered for performance density is

MDE/s per Kilo LUTs (MDE/s/KLUTs). These two metrics

are chosen as they are commonly used across all the hardware

implementations we refer to in this paper. As can be seen

from Table I, our accelerator is able to process 1.6 times

more frames per second compared to best performing [4] and

[7]. Also, our accelerator achieves a comparable performance

density of 118 MDE/s/KLUTs with respect to the others. This

is because of the relatively less LUT consumption even at

higher degrees of parallelism in our architecture. Next, we

discuss the variation in the accuracy of depth maps with

increase in the number of PUs. We evaluate our accelerator by

processing the KITTI 2012 [14] and KITTI 2015 [15] image

datasets.

We report two types of errors, average error and percentage

bad pixels. A pixel is considered bad if the pixel differs from

the corresponding ground truth’s pixel disparity by more than

3. Table II shows error rates due to dependency relaxation that

arises out of increase in the number of PUs, pixel relaxation

of one represents standard SGM with five paths. Starting with

base as PU = 1, with every increment in PU, the average

drop in average non-occluded error and average occluded

error is 0.125 and 0.116 respectively with both data-sets

combined. Similarly average drop in percentage bad pixel

for non-occluded and occluded error is 2.04% and 1.88%

respectively for every increment in PU. Table III compares

the percentage of bad pixels for occluded and non-occluded

pixels with other hardware implementations. Our accelerator

gives more accurate results compared to [7] but a drop of 4.6%

is seen in accuracy in comparison with [11].

We next analyze the throughput gain with the increase in

the number of processing units (PUs) for different frame sizes

with 64 disparity levels, see Table IV. As can be seen, the

FPS increase is proportional to the number of PUs in the

hardware. For example, for a frame of size 1226x370, the

FPS value increases from 209 to 834 as we scale from 1 to 4

PUs respectively.

Resource utilization is another important metric while eval-

uating hardware architectures. Table V, provides a comparison

of resource consumption with respect to KLUTs and BRAMs

with increasing PUs. As can be seen, when the hardware is

scaled from 1 PU to 4 PUs, KLUTs and BRAM increase by

3.77 and 3.72 times respectively. This increment is linear with

respect to the PU increase. Also the scaling-up results in an

increase of FPS by 3.99 times.

307

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:13:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Performance comparison of the proposed hardware accelerator with other state-of-the-art approaches.

Study Algorithm Image Size Disparity Levels Platform FPS MDE/s MDE/s/KLUTs

Cambuim [5] SGM 1024 x 768 128 Cyclone-4 127 12784 126.46

Li [4] SGM 1280 x 960 64 Altera 197 15,493 161.2

Zhang [6] Local 1920 x 1080 128 Kintex-7 60 15925 299

Schumacher [7] SGM 1242 x 375 160 Virtex-5 199 14830 135.96

Ttofis [8] Local 1280 x 720 64 Kintex-7 60 3538 26.8

Puglia [9] Global 1024 x 768 64 Virtex-7 30 1510 5.19

Rahnama [10] ELAS 1242 x 375 64 Zynq-7 47 1401 14.73

J. Wang [11] SGM 1280 x 960 75 Zynq-7 31 2857 145.74

Wang [12] SGM 1600 x 1200 128 Stratix-V 42.16 10472 47.2

Banz et al. [13] SGM 640 x 480 128 Virtex-5 37 1455 21.2

Proposed (PU=4) SGM 1280 x 960 64 Virtex-7 322 25056 118.6

TABLE II: Average error and percentage bad pixel of proposed architecture with increasing pixel relaxation on KITTI dataset.

Pixel KITTI 2012 KITTI 2015
Relaxation Non-Occluded Occluded Non-Occluded Occluded

Avg error % bad pixel Avg error % bad pixel Avg error % bad pixel Avg error % bad pixel
1 4.43 14.6 5.28 16.1 2.76 11.6 3.17 12.8

4 4.27 15 5.06 16.5 2.73 12.5 3.09 13.4

8 4.38 16.3 5.14 17.9 2.9 14.18 3.24 15.2

12 4.49 17.6 5.2 19.1 3.05 15.7 3.39 16.7

16 4.59 18.7 5.35 20.2 3.16 20.8 3.5 21.02

TABLE III: Comparison of percentage bad pixels on KITTI

dataset with other implementations.

Study Platform KITTI 2012 KITTI 2015
Non-
Occ

Occ
Non-
Occ

Occ

Wang [11] Zynq-7 9.55% 10.94% 8.55% 8.91%

PU=1

(Proposed)
Virtex-7 15% 16.5% 10.5% 11.4%

Rahnama [10] Zynq-7 16.3% - - -

Schumacher [7] Virtex-7 16.15% 18.06% - -

TABLE IV: FPS for different image sizes with increasing PUs.

PU 1226 x 3000 1226 x 960 1226 x 370

1 25.8 80.7 209.1

2 51.6 161.3 417.8

3 77.4 241.9 626.7

4 103.2 322.1 834.3

IV. RELATED WORK

C. Banz et al. [13] introduced row-level parallelism using

systolic array [16] based architecture running at 30 FPS for

640x480 pixel images with 128-disparity range. W. Wang et

al. [12] processed 1024x768 pixel images with 96 disparity

levels at 67 FPS on Altera Stratix-IV. They proposed a hybrid

row-level parallelism scheme where they partitioned each row

into segments and also reduced disparity level parallelism

to achieve real-time processing speed. A drastic increase

in memory consumption up to 6.3 MB was observed due

to inconsistency in the data streaming for cross based cost

aggregation with the SGM optimization. Y. Li et al. [4] used

TABLE V: Comparison of resource utilization and perfor-

mance for 1226x960 resolution image on Xilinx Virtex-7.

PU MDE/s KLUTs MDE/KLUT BRAM
1 6279.53 56.008 (13%) 112.12 172 (12%)

2 12548.85 99.06 (23%) 126.68 328.5 (22%)

3 18822.55 163.388 (38%) 115.20 486 (33%)

4 25056.96 211.26 (49%) 118.61 641.5 (43%)

an architecture that runs at high frequency and achieves FPS

of 197 and uses row-level parallelism proposed by Banz [13].

The latest work by J. Wang et al. [11] proposed a low resource

architecture which processed 1280x960 pixel images with 75

disparity levels at 31 FPS. They used parallelism proposed

by Banz [13] after downsampling the image and calculating

disparity for only 50 levels to save on resources. This resulted

in a drop of both accuracy and throughput as their architecture

required four clock cycles to produce disparity of each pixel.

V. CONCLUSIONS

In this paper, we proposed a parallel pipelined hardware

accelerator for computing disparity map. Our stereo vision

algorithm is based on Census Transform and Semi-Global

Matching. An important contribution of our work is a novel

pixel-level data parallelism which establishes a trade-off be-

tween accuracy and throughput. Overall, our hardware archi-

tecture processes 1.6 times more FPS compared to the existing

state of the art SGM implementations on FPGAs. The stereo

vision accelerator achieved 322 FPS for 1280x960 resolution

images with 64 disparity levels on a Virtex-7 FPGA. Our

architecture is scalable and can be tailored according to the

requirement of FPS, accuracy and availability of resources.

308

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:13:47 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal of
Computer Vision, vol. 47, no. 1, pp. 7–42, 2002. [Online]. Available:
https://doi.org/10.1023/A:1014573219977

[2] H. Hirschmuller, “Stereo processing by semi-global matching and mu-
tual information,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 30, no. 2, pp. 328–341, Feb 2008.

[3] J. Banks, M. Bennamoun, and P. Corke, “Non-parametric techniques
for fast and robust stereo matching,” in TENCON’97 Brisbane-Australia.
Proceedings of IEEE TENCON’97. IEEE Region 10 Annual Conference.
Speech and Image Technologies for Computing and Telecommunications
(Cat. No. 97CH36162), vol. 1. IEEE, 1997, pp. 365–368.

[4] Y. Li, C. Yang, W. Zhong, Z. Li, and S. Chen, “High throughput
hardware architecture for accurate semi-global matching,” in 2017 22nd
Asia and South Pacific Design Automation Conference (ASP-DAC), Jan
2017, pp. 641–646.

[5] L. F. S. Cambuim, J. P. F. Barbosa, and E. N. S. Barros, “Hardware
module for low-resource and real-time stereo vision engine using semi-
global matching approach,” in 2017 30th Symposium on Integrated
Circuits and Systems Design (SBCCI), 2017, pp. 53–58.

[6] X. Zhang, H. Sun, S. Chen, L. Song, and N. Zheng, “Nipm-swmf:
Toward efficient fpga design for high-definition large-disparity stereo
matching,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 29, no. 5, pp. 1530–1543, May 2019.

[7] F. Schumacher and T. Greiner, “Matching cost computation algorithm
and high speed fpga architecture for high quality real-time semi global
matching stereo vision for road scenes,” in 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC), Oct 2014, pp.
3064–3069.

[8] C. Ttofis and T. Theocharides, “High-quality real-time hardware stereo
matching based on guided image filtering,” in 2014 Design, Automation
Test in Europe Conference Exhibition (DATE), 2014, pp. 1–6.

[9] L. Puglia, M. Vigliar, and G. Raiconi, “Real-time low-power fpga
architecture for stereo vision,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 64, no. 11, pp. 1307–1311, 2017.

[10] O. Rahnama, D. Frost, O. Miksik, and P. H. S. Torr, “Real-time dense
stereo matching with elas on fpga-accelerated embedded devices,” IEEE
Robotics and Automation Letters, vol. 3, no. 3, pp. 2008–2015, July
2018.

[11] J. Wang, Z. Li, L. Yao, S. Chen, and F. Wu, “Low-resource hardware ar-
chitecture for semi-global stereo matching,” in 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2019, pp. 1–4.

[12] W. Wang, J. Yan, N. Xu, Y. Wang, and F. Hsu, “Real-time high-
quality stereo vision system in fpga,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 25, no. 10, pp. 1696–1708, Oct
2015.

[13] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, “Real-time
stereo vision system using semi-global matching disparity estimation:
Architecture and fpga-implementation,” in 2010 International Confer-
ence on Embedded Computer Systems: Architectures, Modeling and
Simulation, July 2010, pp. 93–101.

[14] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[15] M. Menze, C. Heipke, and A. Geiger, “Joint 3d estimation of vehicles
and scene flow,” in ISPRS Workshop on Image Sequence Analysis (ISA),
2015.

[16] R. P. Hughey, “Programmable systolic arrays,” USA, Tech. Rep., 1991.

309

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:13:47 UTC from IEEE Xplore. Restrictions apply.

