
Accelerating Local Laplacian Filters on FPGAs

Shashwat Khandelwal∗, Ziaul Choudhury∗, Shashwat Shrivastava∗ and Suresh Purini†
Computer Systems Group, International Institute of Information Technology

Hyderabad, India

Email: ∗{shashwat.khandelwal, ziaul.c, shashwat.shrivastava}@research.iiit.ac.in †suresh.purini@iiit.ac.in

Abstract—Images when processed using various enhancement
techniques often lead to edge degradation and other unwanted
artifacts such as halos. These artifacts pose a major problem for
photographic applications where they can denude the quality of
an image. There is a plethora of edge-aware techniques proposed
in the field of image processing. However, these require the
application of complex optimization or post-processing methods.
Local Laplacian Filtering is an edge-aware image processing
technique that involves the construction of simple Gaussian and
Laplacian pyramids. This technique can be successfully applied
for detail smoothing, detail enhancement, tone mapping and in-
verse tone mapping of an image while keeping it artifact-free. The
problem though with this approach is that it is computationally
expensive. Hence, parallelization schemes using multi-core CPUs
and GPUs have been proposed. As is well known, they are not
power-efficient, and a well-designed hardware architecture on
an FPGA can do better on the performance per watt metric. In
this paper, we propose a hardware accelerator, which exploits
fully the available parallelism in the Local Laplacian Filtering
algorithm, while minimizing the utilization of on-chip FPGA
resources. On Virtex-7 FPGA, we obtain a 7.5x speed-up to
process a 1 MB image when compared to an optimized baseline
CPU implementation. To the best of our knowledge, we are
not aware of any other hardware accelerators proposed in the
research literature for the Local Laplacian Filtering problem.

Index Terms—FPGA, image processing, Gaussian and Lapla-
cian pyramids

I. INTRODUCTION

Laplacian pyramids [1] are multi-scale representations of

images that are widely used in image processing as they are

easy to build. But these pyramids are considered ill-suited

for applications which require edge-aware processing as they

are built with spatially invariant Gaussian kernels. Since they

don’t take edge discontinuities into account, it leads to edge

degradation and the introduction of other artifacts such as

halos [2]. Many techniques for edge-aware image processing,

such as anisotropic diffusion [3], [4], neighbourhood filters [5],

[6], edge-aware wavelets [7] and edge-preserving optimiza-

tions [8], [9] have been proposed in the literature. Though

these techniques have been quite successful in producing

artifact-free images they often do it with the use of complex

non-linear methods. Another technique to solve the problem

of edge artifacts is Local Laplacian Filtering [10] which is

an edge-aware technique based on simple Laplacian pyramids

for detail enhancement, detail smoothing, tone mapping, and

inverse tone mapping.

In this technique for every pixel in the Gaussian pyramid of

the input image, there is a small section in the original image

which is passed through a remapping function. A Laplacian

pyramid for this remapped image is constructed and the pixel

corresponding to the Gaussian pixel which we are processing

is picked up and updated in the output Laplacian pyramid. We

present the detailed algorithm in Section II. This technique

is computationally very expensive as for each pixel in the

Gaussian pyramid a Laplacian pyramid is constructed. Hence,

the original paper on Local Laplacian Filtering [10] gives a

multi-core implementation for the same. Aubry et al. [11]

proposed a parallelization approach using GPUs. However, as

it is well-known, FPGAs fare way better than multi-core CPUs

and GPUs on the performance per watt metric. So it is natural

to consider accelerating Local Laplacian Filters on FPGAs.

To the best of our knowledge, there is no prior work on this

problem. However, there is prior work on FPGA realization

of other edge-aware techniques such as bilateral filters [12],

[13].

While there is a lot of parallelism available in the Local

Laplacian Filter computation, it is very difficult to exploit

the same, due to the complexity of the underlying paral-

lelism structure. This is especially so in designing hardware

structures. In this paper, we propose an FPGA based hard-

ware architecture that fully exploits all forms of available

parallelism, albeit complex. Further, we adapted the Gaussian

filter slightly, which enabled us to design a high throughput

convolution engine which is both pipelined and data parallel.

The convolution engine requires no DSP blocks on the FPGA

and uses minimal LUTs. The remap function computation is

turned into a table lookup operation thereby saving substantial

hardware resources. This also helped in eliminating associated

computational latency. We verified the accuracy of our imple-

mentation by comparing it with the original implementation

using the PSNR metric. Finally, through a set of experiments,

we have found our implementation to be 7.5x times faster than

the original CPU version.

The layout of the rest of the paper is as follows. Section II

provides the detailed algorithm for Local Laplacian Filtering;

Section III presents our novel parallel architecture; Section IV

contain the experimental results; and finally we conclude in

Section V.

II. BACKGROUND

In this section, we present the necessary background on

Local Laplacian Filtering algorithm which is essential for

understanding the proposed accelerator architecture in Sec-

tion III.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:16:46 UTC from IEEE Xplore. Restrictions apply.

A. Gaussian and Laplacian Pyramids

The Gaussian pyramid for an input image I is a set

of images {Gl | 0 ≤ l ≤ n} such that G0 = I and

Gl+1 = downsample(Gl). Downsampling an image involves

application of Gaussian filter followed by a sub-sampling pro-

cedure. The dimensions of Gl+1 are half that of Gl. Thus, the

image sequence in the Gaussian pyramid is an increasingly low

resolution representation of the original image I . Associated

with a Gaussian pyramid {Gl}, we can construct a Laplacian

pyramid {Ll}, wherein Ll = Gl − upsample(Gl+1). The

upsampling operation doubles the dimensions of the image

Gl+1 using a smoothing operation. Given the Gaussian and

Laplacian pyramids, we can collapse the Laplacian pyramid

from the top by iteratively applying the operation Gl =
Ll + upsample(Gl+1) until l = 0.

B. Local Laplacian Filtering

Image processing using basic Gaussian and Laplacian pyra-

mids can lead to edge artifacts in applications such as detail

enhancement and tone mapping. The Local Laplacian Filtering

algorithm described in this section shows how its edge-aware

approach circumvents these problems.

The Gaussian and Laplacian pyramids for an image J are

denoted by G[J] and L[J] respectively. The image J can be the

input image or a sub-image of the input image. Gl[J] denotes

level l of the Gaussian pyramid and Gl[J](x, y) denotes the

pixel at (x, y) position within the level l. We use analogous

notation Ll[J] and Ll[J](x, y) for Laplacian pyramid. The

first step in Local Laplacian Filtering is the construction of

the Gaussian pyramid G[I]. For every pixel g = Gl[I](x, y)
of the Gaussian pyramid, a sub-image R in the input image

is identified. This sub-image is passed through a remapping

function. The remapping functions categorizes each pixel i in

the sub-image as an edge or a detail. If |i − g| ≤ σ, where

σ is a user-defined parameter, then the pixel is treated as a

fine-scale detail, which is modified by the detail remapping

function rd as follows.

rd(i, g, σ) = g + sign(i− g)σfd(|i− g|/σ) (1)

The function fd is a detail manipulation function which

performs smoothing (if α > 1) or enhancement (if 0 < α < 1)
operations, where α is an user-defined parameter. On the other

hand, a pixel i is treated as an edge if |i − g| > σ. Then the

pixel is modified by applying the following edge-remapping

function re.

re(i, g, σ) = g + sign(i− g)(fe(|i− g| − σ) + σ) (2)

The edge-aware tone mapping function fe performs tone

mapping, (if 0 ≤ β < 1), and inverse tone mapping, if β > 1,
where β is a user-defined parameter.

Let R̃ denote the remapped image. Then the Gaussian pyra-

mid G[R̃] and the Laplacian pyramid L[R̃] of the remapped

image are constructed. Recall that we are trying to compute

the Laplacian coefficient Ll[I](x, y) corresponding to the pixel

g = Gl[I](x, y) in an edge-aware fashion. Hence, the Lapla-

cian coefficient Ll[R̃](x, y) is used in the place of Ll[I](x, y).

This process is followed for every pixel Gl[I](x, y) to com-

pletely generate the edge-aware output Laplacian pyramid

L̃[I]. Note that while L[I] denotes the regular Laplacian pyra-

mid, L̃[I] denotes the Laplacian pyramid constructed using

the Local filtering method. The generated output Laplacian

pyramid can be collapsed to construct the enhanced input

image without introducing any edge artifacts.

III. PROPOSED ARCHITECTURE

This section describes our hardware architecture in detail.

The Gaussian pyramid associated with the input image G[I]
is constructed on the host. The construction of the Laplacian

pyramid L̃[I] which is the most computationally expensive

happens on the FPGA. Finally, image reconstruction from the

Laplacian pyramid is done on the host system. The hardware

for Laplacian pyramid construction on the FPGA broadly

consists of 9 processing units. All the 3 RGB channels in an

image are processed in parallel. For each channel, three levels

of output Laplacian pyramid L̃1, L̃2 and L̃3 are constructed in

parallel. Each level L̃i, for i = 0, 1, 2 is computed by a Level

Processing Unit (LPU) L̃i. Figure 1 shows an overview of the

hardware architecture and the data flow in the heterogeneous

system. Each LPU consists of a remap unit, a convolution

engine, a downsampling unit and an upsampling unit as shown

in Figure 2. Data is fed from the host to the nine processing

units independently. This is done by creating nine separate

input streams. The output data from the nine processing

units is transferred to the host from the FPGA using nine

independent output streams.

A. Remap Unit

From Figure 2, we can notice that the first stage in any LPU

is a Remap Unit. Recall from Section II-B, the remap function

treats a pixel i as a detail or an edge depending on whether

|i − g| ≤ σ. If it is a detail, then the detail function rd is

applied, otherwise, the edge function re is used. These remap

functions involve addition, multiplication and exponentiation

operations. Exponential functions can be approximated, but

are still difficult to handle in hardware.

The remap functions rd(i, g, σ) and re(i, g, σ) invoke the

functions fd and fe respectively. These functions depend on

the user-defined parameter α, β and σ; and on the pixel differ-

ence value |i−g|. The user-defined parameters remain constant

once fixed. Since the pixels i, g ∈ [0, 255], the absolute value

of their difference |i−g| ∈ [0, 255]. Based on this observation,

for a given α, β, σ and 0 ≤ |i−g| ≤ 255, we pre-compute the

sub-expressions σfd(|i−g|/σ) and fe(|i−g|−σ)+σ, necessary

for computing the functions rd and re respectively. These pre-

computed values are stored in a look-up table on FPGA and

is indexed by |i − g| value. Thus complex computations at

runtime are completely eliminated saving on computational

latency and FPGA hardware resources.

B. Convolution Engine

After a remap function is applied to a sub-image asso-

ciated with a pixel, we apply Gaussian filter followed by

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:16:46 UTC from IEEE Xplore. Restrictions apply.

Column
Generation

Unit

HOST SYSTEMHOST SYSTEM FPGA
Input Output

Memory
Controller

L1
L2
L3
L1
L2
L3
L1
L2
L3

Memory
Controller

Recontruction

Gaussian
Pyramid

256
256
256

256
256
256
256

256

256

256
256
256
256
256
256
256

256

256

16
16
16
16
16
16
16

16
16

16
16
16
16
16
16
16

16

16

Fig. 1: Overview of the hardware architecture depicting the flow of data from the host to FPGA and then back to the host. It

shows the example of a detail enhancement operation.

Fig. 2: LPUs L̃1, L̃2 and L̃3, each comprising of a remap unit,

a convolution engine, a downsampling unit and an upsampling

unit.

a downsampling operation. Depending on whether we are

constructing L̃1, L̃2 or L̃3 level, we iterate this filter followed

by downsampling operation that many times. For example, in

Figure 2, we can notice that in L̃2 LPU, that iteration happens

for 2 times.

Applying Gaussian filter on an input image is a two-

dimensional convolution operation. As convolution operations

involve Multiply-and-Accumulate operations (MACs), they are

usually realized using the FPGA DSP blocks. Hence the

number of convolutions that can be performed in parallel

is constrained by the DSP availability. We circumvent this

problem by modifying the convolution operation so that it can

be computed using a simple shift-and-add operation instead

of a costly MAC. The shift-and-add operation can be realized

using only LUTs, which are present in a relatively higher

percentage on the FPGAs. Consequently, our hardware at its

peak is able to sustain 783 3x3 convolutions per cycle without

using any DSP units.

The Convolution Engine (CE) in Figure 2 performs convolu-

tions on an input image in a streaming fashion exploiting both

pipelined and data parallelism. We approximated the original

Gaussian filter proposed in [1] with the following 3x3 filter Ĝ
which is more amenable for our shift-and-accumulate way of

computation.

Ĝ =

⎡
⎣

1
2α

1
2α−1

1
2α

1
2α−1

1
2α−2

1
2α−1

1
2α

1
2α−1

1
2α

⎤
⎦

>> 3

>> 4

>> 4

a

b

c

Shift-and-Accumulate Unit

l c
o

lu
m

n
 v

al
u

es

SAU

SAU

SAU

SAU

l-2 convolution values

1
bi

t l
ef

t s
hi

ft

1
bi

t r
ig

ht
 s

hi
ft

Fig. 3: Architecture of the Convolution Engine which exploits

both pipelined and data parallelism simultaneously.

The parameter α is a scale factor and we have set it to 4 in our

experimental results. Note that the second column of the filter

matrix is obtained by multiplying the first column by 2 and

the third column is obtained by dividing the second column

by 2. We use this observation to design a 3-stage pipelined

engine for convolution operations. Further, the convolution

engine is designed to perform convolutions on l rows of an

image simultaneously. A 3x3 convolution on l rows results

in simultaneously rendering l − 2 rows of the output filtered

image in a streaming fashion. The first stage of the convolution

engine takes a vector X0 of size l. and generates a vector X1 of

size l−2. The element X1[i] of the output vector is computed

by the Shift-and-Accumulate Unit SAUi as follows.

X1[i] = X0[i− 1] >> 4 +X0[i] >> 3 +X0[i+ 1] >> 4

Thus, the first stage contains an array of l − 2 Shift-and-

Accumulate units. The second stage of the pipeline takes the

l− 2 dimensional vector B and generates another vector C of

same dimension as follows.

X2[i] = X1[i] << 1

The third stage of the pipeline takes the l − 2 dimensional

vector C and generates another vector D of same dimension

as follows.

X3[i] = X2[i] >> 1

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:16:46 UTC from IEEE Xplore. Restrictions apply.

Channel
Parallelism

(R,G,B)

Level
Parallelism

Level
Parallelism

Level
Parallelism

L1 L2 L3 L1 L2 L3 L1 L2 L3

Data
Parallelism

Pipelined
Parallelism

Data
Parallelism

Pipelined
Parallelism

Pipelined
Parallelism

Data
Parallelism

Fig. 4: Summary of the parallelization scheme.

After an initial latency of 2 clock cycles, once the pipeline

becomes full, the first column of the filtered output image is

nothing but the sum of the l− 2 dimensional vectors X1, X2

and X3 present at different stages in the pipeline. Thus, the

convolution engine uses both pipelined parallelism and data

parallelism across rows to maintain high throughput. Figure 3

depicts the architecture of the convolution engine described in

this section.

C. Downsampling and Upsampling Units

Each LPU also consists of downsampling and upsampling

units. Downsampling is done by taking every alternate value

from the input row/column and giving them as output. Up-

sampling is done by inserting zeroes in every alternate value

in the input row/column and giving them as output. Note that

the downsampling operation follows a filter operation in the

Gaussian pyramid construction. And, upsampling is followed

by a filter operation to construct the required level of the

Laplacian pyramid.

D. Summary of Parallelization Scheme

We have planned the hardware architecture in a way to make

use of all kinds of parallelisms which the algorithm has to

offer. First, we make use of the channel parallelism, where

we process the three RGB channels of the image in parallel

as shown in the Figure 4. We then use level parallelism within

a channel to compute the 3 levels L̃1, L̃2 and L̃3 of the

output Laplacian pyramid simultaneously. Inside each level,

we exploit pipelined parallelism to process each pixel of the

output laplacian pyramid. We also use data parallelism, as

we process entire columns of the sub-image in a single shot,

while performing all the operations in a pipeline, rather than

processing it pixel by pixel.

IV. EXPERIMENTAL RESULTS

All the experiments are performed on a Virtex-7 FPGA

connected to a 3 GHz Intel Core-i5 through a 3.5 GBPS PCIe-

8x link. The host code is written in C++11 and compiled

on a Ubuntu-16.4 system using GCC-5.4. Our hardware is

synthesized at a clock frequency of 100 MHz. The three

Level Processing Units in our accelerator are synthesized as

independent IPs and stitched together in the whole system

design. Depending on the availability of FPGA resources and

memory bandwidth, it is possible to instantiate LPUs which

are deeper and hence can handle higher layers of Laplacian

pyramids.

The original baseline implementation due to Paris et al. [10]

uses a 5x5 Gaussian filter and constructs all the levels of the

output Laplacian pyramid L̃[I]. On a 2.2 GHz Intel Xeon CPU

with 8 cores, for one megapixel image, they report that using

a single thread the computation takes a minute. They optimize

on time by reducing the number of levels in the intermediate

Laplacian pyramids to 5. This is achieved by considering the

sub-image at level max{0, l − 3} while processing a pixel at

level l. The remap function is applied on the coarse-grained

sub-image rather than the sub-image at a full resolution. This

reduces the size of the sub-image substantially as the level

l increases, thereby saving on computations. However, there

could be a loss in accuracy. The claim though is that the loss

in accuracy is visually indistinguishable from the full pyramid

process with a PSNR ranging from 30 to 40 dB. The modified

approach took 4 seconds while using 8 cores for the same one

mega-pixel image.

In this paper, we construct only three levels L̃i, 0 ≤ i ≤ 3
of the output Laplacian pyramid using 3x3 modified Gaussian

filter. The intermediate Laplacian pyramids are constructed by

using the full resolution sub-image though. We compare our

approach with that of the baseline on the latency and accuracy

metrics.

A. Latency

Table I shows that our accelerator can process a 1 mega-

pixel image in 534 milli-seconds (ms) as against 4 seconds

time taken by the 8-core CPU implementation. This gives us

7.5x speedup over the baseline. It also shows the latency for

various image sizes.

For example, the last row of the table shows the time

taken when the image size is one mega-pixel. As expected

the latency associated with the level L̃1 is the highest when

compared with the other levels as it computes the maximum

number of pixels in the output Laplacian pyramid. The column

labelled sequential denotes the time taken if the three levels

are processed sequentially as against the time taken when they

are processed in parallel which is the case in our architecture.

Size (MP) Latency (ms)
L1 L2 L3 Sequential Parallel

0.25 133 64 49 246 133

0.5 267 129 99 495 267

0.75 400 194 148 772 400

1 534 259 198 991 534

TABLE I: Latency of the LPUs L̃1, L̃2 and L̃3 while process-

ing images of different sizes.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:16:46 UTC from IEEE Xplore. Restrictions apply.

β = 1 α = 1
σ\α 0.25 0.5 2 σ\β 0 0.5 1

0.1 45.5 48.03 48.33 0.1 40.56 45.42 49.98

0.2 40.55 44.88 46.12 0.2 43.13 47.37 49.98

0.4 34.75 40.19 40.88 0.4 49.94 49.11 49.98

TABLE II: PSNR values comparing the original CPU im-

plementation with the FPGA implementation for the flower

image.

B. Accuracy

We compared our implementation against the baseline CPU

implementation wherein the intermediate Laplacian pyramids

are constructed from the full resolution sub-image as against

the downsampled sub-image. Note that the latencies reported

in the previous sub-section is for the downsampled sub-image

approach. Table II shows the PSNR values for various values

of the user-defined parameters α, β and σ. The PSNR values

range between 30 to 50 dB with most values close to or above

40 dB.

The first half of Table II shows us the PSNR values when we

perform detail enhancing and detail smoothing operations on

the image. In these operations, β = 1 , which means that only

the detail remapping function contributes to the modification

of the input image. We see for a fixed value of α, as the

value of σ increases there is a drop in the PSNR value. This

is because as the value of σ increases, more pixels in the

image, possibly including edge pixels, are treated as details by

the hardware and modified by the detail remapping function.

Therefore a drop in PSNR is expected.

The second half of Table II shows us the PSNR values when

we perform tone mapping and inverse tone mapping on the

image. In these operations, α = 1, which means that only

the edge remapping function contributes to the modification

of the input image. In this case, we see that when the value

of σ is small, many pixels could be misclassified as edges and

the edge remapping function may be wrongly applied, leading

to low PSNR values. However, with the increase in the value

of σ, the misclassification rate decreases which leads to the

increase in the PSNR value. Overall, it can noted that our

approximation scheme to make the Local Laplacian Filtering

computationally tractable does not lead to a loss in the image

quality measured using either the PSNR metric or by visual

inspection.

C. Active vs Inactive Cycles

We test the efficiency of our hardware pipeline, on a per

LPU basis, by counting the number of active and inactive

cycles out of the total execution cycles. An execution cycle is

considered to be active for an LPU if it is busy processing data

and considered inactive if it is waiting for the data. For all the

3 LPUs, we find that the execution efficiency increases with

the increase in the PCIe bandwidth. For example, the execution

efficiency of LPU L̃3 at PCIe bandwidths 32 and 256 bits per

clock cycle is 44.9 percent and 92.3 percent respectively.

Fig. 5: Graph (a) shows the latency of L̃1 with the increase

in the number of instances. Graph (b) shows the resource

utilization of the hardware with the increase in the number

of instances of L̃1.

D. Design Space Exploration

When all the three RGB channels i.e., all the nine processing

units as shown in Figure 1 run on the Virtex-7 FPGA, the

LUT resource consumption is 19% of the total available on

Virtex-7. We know that the computation of each pixel of

the output Laplacian pyramid is independent of one another.

This leaves us with a lot of scope for hardware scaling by

replicating the LPUs and distributing the computations among

them to improve the overall latency. Out of the three levels,

L̃1 computes the maximum number of pixels of the output

Laplacian pyramid. L̃1 takes the maximum amount of time to

complete but has the least resource consumption among L̃1,

L̃2 and L̃3 with 1.28% LUT usage. Therefore, we can scale

L̃1 by replicating it multiple times in the hardware, thereby

dividing the processing among the replicated units to improve

overall latency.

Graph (a) in Figure 5 shows the LUT usage of the hardware

as the number of instances increase from of L̃1 from 1 to 6.

Graph (b) in Figure 5 shows that as the number of instances of

L̃1 increases from 1 to 6 its overall latency reduces drastically

showing that the hardware scaling is effective.

V. CONCLUSIONS

In this paper, we proposed a novel pipelined and data

parallel architecture for Local Lapalcian Filtering algorithm

which is an edge-aware image processing technique. We

exploit most of the data parallelism provided by the algorithm.

In the current architecture, although it is possible to construct

intermediate Laplacian pyramids corresponding to different

pixels within the same level, we process them one after

another. They could be processed in parallel if enough memory

bandwidth is available. Further, we proposed an approximation

to the Gaussian filter which enabled us to design a high

throughput convolution engine which has both pipeline and

data parallelism in it. The Gaussian filter approximation allows

for computation of convolutions without using the FPGA

DSP blocks. We also found that the LUT usage of our

implementation is very low. We believe that because of this

low resource utilization our implementation can effectively

lend itself to further hardware scaling and can be implemented

on lower end boards like ZedBoard.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:16:46 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] P. Burt and E. Adelson, “The laplacian pyramid as a compact image
code,” IEEE Transactions on communications, vol. 31, no. 4, pp. 532–
540, 1983.

[2] H. Tsutsui, S. Yoshikawa, H. Okuhata, and T. Onoye, “Halo artifacts
reduction method for variational based realtime retinex image enhance-
ment,” in Proceedings of The 2012 Asia Pacific Signal and Information
Processing Association Annual Summit and Conference, pp. 1–6, IEEE,
2012.

[3] G. Aubert and P. Kornprobst, Mathematical problems in image pro-
cessing: partial differential equations and the calculus of variations,
vol. 147. Springer Science & Business Media, 2006.

[4] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on pattern analysis and ma-
chine intelligence, vol. 12, no. 7, pp. 629–639, 1990.

[5] M. Kass and J. Solomon, “Smoothed local histogram filters,” in ACM
SIGGRAPH 2010 papers, pp. 1–10, 2010.

[6] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Sixth international conference on computer vision (IEEE
Cat. No. 98CH36271), pp. 839–846, IEEE, 1998.

[7] R. Fattal, “Edge-avoiding wavelets and their applications,” ACM Trans-
actions on Graphics (TOG), vol. 28, no. 3, pp. 1–10, 2009.

[8] P. Bhat, C. L. Zitnick, M. Cohen, and B. Curless, “Gradientshop: A
gradient-domain optimization framework for image and video filtering,”
ACM Transactions on Graphics (TOG), vol. 29, no. 2, pp. 1–14, 2010.

[9] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving
decompositions for multi-scale tone and detail manipulation,” ACM
Transactions on Graphics (TOG), vol. 27, no. 3, pp. 1–10, 2008.

[10] S. Paris, S. W. Hasinoff, and J. Kautz, “Local laplacian filters: Edge-
aware image processing with a laplacian pyramid.,” ACM Trans. Graph.,
vol. 30, no. 4, p. 68, 2011.

[11] M. Aubry, S. Paris, S. W. Hasinoff, J. Kautz, and F. Durand, “Fast
local laplacian filters: Theory and applications,” ACM Transactions on
Graphics (TOG), vol. 33, no. 5, pp. 1–14, 2014.

[12] S. D. Dabhade, G. Rathna, and K. N. Chaudhury, “A reconfigurable and
scalable fpga architecture for bilateral filtering,” IEEE Transactions on
Industrial Electronics, vol. 65, no. 2, pp. 1459–1469, 2017.

[13] A. Gabiger-Rose, M. Kube, R. Weigel, and R. Rose, “An fpga-based
fully synchronized design of a bilateral filter for real-time image
denoising,” IEEE Transactions on Industrial Electronics, vol. 61, no. 8,
pp. 4093–4104, 2014.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 19,2024 at 22:16:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

